Xianting Wang, Li Wang, Bibo Wu, Zhaofeng Yuan, Yingying Zhong, Lin Qi, Miao Wang, Yuping Wu, Tida Ge, Zhenke Zhu
{"title":"微量元素在决定枇杷果园土壤微生物群落和果实微量营养元素中被忽视的作用。","authors":"Xianting Wang, Li Wang, Bibo Wu, Zhaofeng Yuan, Yingying Zhong, Lin Qi, Miao Wang, Yuping Wu, Tida Ge, Zhenke Zhu","doi":"10.3389/fmicb.2024.1447921","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The relationships among microelements and soil microbial communities are essential for understanding the maintenance of soil's ecological functions and their effects on fruit quality in orchards. However, these relationships have not been adequately studied, despite the importance of microelements for the growth of microorganisms and plants.</p><p><strong>Methods: </strong>To address this research gap, we investigated the relationships among microelements (K, Ca, Na, Mg, Fe, Mn, Zn, and Cu), the diversity and composition of soil microbiomes, and fruit quality in loquat orchards.</p><p><strong>Results: </strong>We found that microelements explained more variations in microbial community structures than geographic position, basic soil properties, and macroelements, with 19.6-42.6% of bacterial, 4.3-27.7% of fungal, and 5.9-18.8% of protistan genera significantly correlated with microelements. Among the microelements, AMg and ACu were the most influential in determining the soil microbiome. The soil microbes exhibited varied threshold values for environmental breadth among the microelements, with the broadest range for AMg and the narrowest for AZn. Additionally, the microbes showed significant phylogenetic signals for all microelements, with an increasing divergence of soil microelements. The dominant community assembly shifted from homogeneous selection to stochastic, and then to heterogeneous selection. Moreover, microelements and the microbiome were the top two factors individually explaining 11.0 and 11.4% of fruit quality variation, respectively.</p><p><strong>Discussion: </strong>These results highlight the importance of microelement fertilization in orchard management and provide scientific guidance for improving fruit quality.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neglected role of microelements in determining soil microbial communities and fruit micronutrients in loquat orchards.\",\"authors\":\"Xianting Wang, Li Wang, Bibo Wu, Zhaofeng Yuan, Yingying Zhong, Lin Qi, Miao Wang, Yuping Wu, Tida Ge, Zhenke Zhu\",\"doi\":\"10.3389/fmicb.2024.1447921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The relationships among microelements and soil microbial communities are essential for understanding the maintenance of soil's ecological functions and their effects on fruit quality in orchards. However, these relationships have not been adequately studied, despite the importance of microelements for the growth of microorganisms and plants.</p><p><strong>Methods: </strong>To address this research gap, we investigated the relationships among microelements (K, Ca, Na, Mg, Fe, Mn, Zn, and Cu), the diversity and composition of soil microbiomes, and fruit quality in loquat orchards.</p><p><strong>Results: </strong>We found that microelements explained more variations in microbial community structures than geographic position, basic soil properties, and macroelements, with 19.6-42.6% of bacterial, 4.3-27.7% of fungal, and 5.9-18.8% of protistan genera significantly correlated with microelements. Among the microelements, AMg and ACu were the most influential in determining the soil microbiome. The soil microbes exhibited varied threshold values for environmental breadth among the microelements, with the broadest range for AMg and the narrowest for AZn. Additionally, the microbes showed significant phylogenetic signals for all microelements, with an increasing divergence of soil microelements. The dominant community assembly shifted from homogeneous selection to stochastic, and then to heterogeneous selection. Moreover, microelements and the microbiome were the top two factors individually explaining 11.0 and 11.4% of fruit quality variation, respectively.</p><p><strong>Discussion: </strong>These results highlight the importance of microelement fertilization in orchard management and provide scientific guidance for improving fruit quality.</p>\",\"PeriodicalId\":12466,\"journal\":{\"name\":\"Frontiers in Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmicb.2024.1447921\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1447921","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Neglected role of microelements in determining soil microbial communities and fruit micronutrients in loquat orchards.
Introduction: The relationships among microelements and soil microbial communities are essential for understanding the maintenance of soil's ecological functions and their effects on fruit quality in orchards. However, these relationships have not been adequately studied, despite the importance of microelements for the growth of microorganisms and plants.
Methods: To address this research gap, we investigated the relationships among microelements (K, Ca, Na, Mg, Fe, Mn, Zn, and Cu), the diversity and composition of soil microbiomes, and fruit quality in loquat orchards.
Results: We found that microelements explained more variations in microbial community structures than geographic position, basic soil properties, and macroelements, with 19.6-42.6% of bacterial, 4.3-27.7% of fungal, and 5.9-18.8% of protistan genera significantly correlated with microelements. Among the microelements, AMg and ACu were the most influential in determining the soil microbiome. The soil microbes exhibited varied threshold values for environmental breadth among the microelements, with the broadest range for AMg and the narrowest for AZn. Additionally, the microbes showed significant phylogenetic signals for all microelements, with an increasing divergence of soil microelements. The dominant community assembly shifted from homogeneous selection to stochastic, and then to heterogeneous selection. Moreover, microelements and the microbiome were the top two factors individually explaining 11.0 and 11.4% of fruit quality variation, respectively.
Discussion: These results highlight the importance of microelement fertilization in orchard management and provide scientific guidance for improving fruit quality.
期刊介绍:
Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.