绿色合成 Mn3O4 和聚(邻苯二胺),用于抗菌纺织品超级电容器。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-09-17 DOI:10.1088/1361-6528/ad773b
Darshini K S, Sohini Chakraborty, Dona Mary Sam, Mary N L
{"title":"绿色合成 Mn3O4 和聚(邻苯二胺),用于抗菌纺织品超级电容器。","authors":"Darshini K S, Sohini Chakraborty, Dona Mary Sam, Mary N L","doi":"10.1088/1361-6528/ad773b","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of wearable supercapacitors (SCs) has recently garnered a lot of attention owing to their ease of fabrication into textiles, low cost, long cycle life, fast charging and discharging, high efficiency, and ability to bridge the energy and power gap between conventional capacitors and batteries. The present study focuses on the development of wearable textile-based SC electrodes using green-synthesised manganese oxide nanoparticles functionalised on poly(o-phenylenediamine) reinforced to a polymer nanocomposite. The prepared nanocomposite was characterized using spectroscopic techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy, x-ray diffraction studies, and scanning electron microscopy to validate the incorporation of metal oxide nanoparticles into the polymer matrix. The thermal properties were studied using thermogravimetric analysis and differential scanning calorimetry. The electrochemical performance of the bare polymer and the nanocomposite was evaluated using cyclic voltammetry, galvanostatic charge-discharge, and impedance spectroscopy techniques. An impressive specific capacitance of 213 Fg<sup>-1</sup>was achieved at a current density of 1 Ag<sup>-1</sup>for the polymer nanocomposite and even after 1000 cycles a capacitance retention of 89% was observed. Enhanced antimicrobial activity was also observed for the nanocomposite against both gram-negative and gram-positive bacteria. Based on these attributes, the fabricated device can be used as an efficient antimicrobial wearable SC.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesised Mn<sub>3</sub>O<sub>4</sub>and poly (o-phenylenediamine) for antimicrobial textile-based supercapacitor applications.\",\"authors\":\"Darshini K S, Sohini Chakraborty, Dona Mary Sam, Mary N L\",\"doi\":\"10.1088/1361-6528/ad773b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advancement of wearable supercapacitors (SCs) has recently garnered a lot of attention owing to their ease of fabrication into textiles, low cost, long cycle life, fast charging and discharging, high efficiency, and ability to bridge the energy and power gap between conventional capacitors and batteries. The present study focuses on the development of wearable textile-based SC electrodes using green-synthesised manganese oxide nanoparticles functionalised on poly(o-phenylenediamine) reinforced to a polymer nanocomposite. The prepared nanocomposite was characterized using spectroscopic techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy, x-ray diffraction studies, and scanning electron microscopy to validate the incorporation of metal oxide nanoparticles into the polymer matrix. The thermal properties were studied using thermogravimetric analysis and differential scanning calorimetry. The electrochemical performance of the bare polymer and the nanocomposite was evaluated using cyclic voltammetry, galvanostatic charge-discharge, and impedance spectroscopy techniques. An impressive specific capacitance of 213 Fg<sup>-1</sup>was achieved at a current density of 1 Ag<sup>-1</sup>for the polymer nanocomposite and even after 1000 cycles a capacitance retention of 89% was observed. Enhanced antimicrobial activity was also observed for the nanocomposite against both gram-negative and gram-positive bacteria. Based on these attributes, the fabricated device can be used as an efficient antimicrobial wearable SC.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ad773b\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad773b","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于可穿戴超级电容器(SC)易于制造、成本低、易于集成到纺织品中、循环寿命长、充电和放电速度快、效率高,并且能够弥合传统电容器和电池之间的能量和功率差距,因此其发展近来备受关注。本研究的重点是利用绿色合成的氧化锰增强功能化聚(邻苯二胺)纳米复合材料开发基于纺织品的可穿戴超级电容器电极。利用紫外-可见光谱、傅立叶变换红外光谱、X 射线衍射研究和扫描电子显微镜等光谱技术对制备的纳米复合材料进行了表征,以验证金属氧化物纳米颗粒与聚合物基体的结合。热重分析和差示扫描量热法对热性能进行了研究。使用循环伏安法、电静态充放电和阻抗光谱技术评估了裸聚合物和纳米复合材料的电化学性能。在电流密度为 1 Ag-1 时,聚合物纳米复合材料的比电容达到了令人印象深刻的 213 Fg-1,即使在 1000 次循环后,电容保持率也达到了 89%。此外,还观察到纳米复合材料对革兰氏阴性菌和革兰氏阳性菌都具有更强的抗菌活性。基于这些特性,所制造的装置可用作高效的抗菌可穿戴超级电容器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Green synthesised Mn3O4and poly (o-phenylenediamine) for antimicrobial textile-based supercapacitor applications.

The advancement of wearable supercapacitors (SCs) has recently garnered a lot of attention owing to their ease of fabrication into textiles, low cost, long cycle life, fast charging and discharging, high efficiency, and ability to bridge the energy and power gap between conventional capacitors and batteries. The present study focuses on the development of wearable textile-based SC electrodes using green-synthesised manganese oxide nanoparticles functionalised on poly(o-phenylenediamine) reinforced to a polymer nanocomposite. The prepared nanocomposite was characterized using spectroscopic techniques such as UV-visible spectroscopy, Fourier transform infrared spectroscopy, x-ray diffraction studies, and scanning electron microscopy to validate the incorporation of metal oxide nanoparticles into the polymer matrix. The thermal properties were studied using thermogravimetric analysis and differential scanning calorimetry. The electrochemical performance of the bare polymer and the nanocomposite was evaluated using cyclic voltammetry, galvanostatic charge-discharge, and impedance spectroscopy techniques. An impressive specific capacitance of 213 Fg-1was achieved at a current density of 1 Ag-1for the polymer nanocomposite and even after 1000 cycles a capacitance retention of 89% was observed. Enhanced antimicrobial activity was also observed for the nanocomposite against both gram-negative and gram-positive bacteria. Based on these attributes, the fabricated device can be used as an efficient antimicrobial wearable SC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Controllable p-type doping and improved conductance of few-layer WSe2via Lewis acid. Synergistic applications of quantum dots and magnetic nanomaterials in pathogen detection: a comprehensive review. Piezoelectric dispenser printing and intense pulsed light sintering of AgNW/PEDOT:PSS hybrid transparent conductive films. Site-controlled growth of In(Ga)As/GaAs quantum dots on patterned substrate. High performance and nearly wake-up free Hf0.5Zr0.5O2ferroelectric capacitor realized by middle layer strategy with BEOL compatibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1