Agnieszka Uryga, Mikołaj Najda, Ignacy Berent, Cyprian Mataczyński, Piotr Urbański, Magdalena Kasprowicz, Teodor Buchner
{"title":"控制呼吸对自律神经系统调制的影响:利用相位校正信号平均、熵和心率变异性进行分析。","authors":"Agnieszka Uryga, Mikołaj Najda, Ignacy Berent, Cyprian Mataczyński, Piotr Urbański, Magdalena Kasprowicz, Teodor Buchner","doi":"10.1088/1361-6579/ad7778","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The present study investigated how breathing stimuli affect both non-linear and linear metrics of the autonomic nervous system (ANS).<i>Approach.</i>The analysed dataset consisted of 70 young, healthy volunteers, in whom arterial blood pressure (ABP) was measured noninvasively during 5 min sessions of controlled breathing at three different frequencies: 6, 10 and 15 breaths min<sup>-1</sup>. CO<sub>2</sub>concentration and respiratory rate were continuously monitored throughout the controlled breathing sessions. The ANS was characterized using non-linear methods, including phase-rectified signal averaging (PRSA) for estimating heart acceleration and deceleration capacity (AC, DC), multiscale entropy, approximate entropy, sample entropy, and fuzzy entropy, as well as time and frequency-domain measures (low frequency, LF; high-frequency, HF; total power, TP) of heart rate variability (HRV).<i>Main results.</i>Higher breathing rates resulted in a significant decrease in end-tidal CO<sub>2</sub>concentration (<i>p</i>< 0.001), accompanied by increases in both ABP (<i>p <</i>0.001) and heart rate (HR,<i>p <</i>0.001). A strong, linear decline in AC and DC (<i>p <</i>0.001 for both) was observed with increasing breathing rate. All entropy metrics increased with breathing frequency (<i>p <</i>0.001). In the time-domain, HRV metrics significantly decreased with breathing frequency (<i>p <</i>0.01 for all). In the frequency-domain, HRV LF and HRV HF decreased (<i>p</i>= 0.038 and<i>p</i>= 0.040, respectively), although these changes were modest. There was no significant change in HRV TP with breathing frequencies.<i>Significance.</i>Alterations in CO<sub>2</sub>levels, a potent chemoreceptor trigger, and changes in HR most likely modulate ANS metrics. Non-linear PRSA and entropy appear to be more sensitive to breathing stimuli compared to frequency-dependent HRV metrics. Further research involving a larger cohort of healthy subjects is needed to validate our observations.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of controlled breathing on autonomic nervous system modulation: analysis using phase-rectified signal averaging, entropy and heart rate variability.\",\"authors\":\"Agnieszka Uryga, Mikołaj Najda, Ignacy Berent, Cyprian Mataczyński, Piotr Urbański, Magdalena Kasprowicz, Teodor Buchner\",\"doi\":\"10.1088/1361-6579/ad7778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>The present study investigated how breathing stimuli affect both non-linear and linear metrics of the autonomic nervous system (ANS).<i>Approach.</i>The analysed dataset consisted of 70 young, healthy volunteers, in whom arterial blood pressure (ABP) was measured noninvasively during 5 min sessions of controlled breathing at three different frequencies: 6, 10 and 15 breaths min<sup>-1</sup>. CO<sub>2</sub>concentration and respiratory rate were continuously monitored throughout the controlled breathing sessions. The ANS was characterized using non-linear methods, including phase-rectified signal averaging (PRSA) for estimating heart acceleration and deceleration capacity (AC, DC), multiscale entropy, approximate entropy, sample entropy, and fuzzy entropy, as well as time and frequency-domain measures (low frequency, LF; high-frequency, HF; total power, TP) of heart rate variability (HRV).<i>Main results.</i>Higher breathing rates resulted in a significant decrease in end-tidal CO<sub>2</sub>concentration (<i>p</i>< 0.001), accompanied by increases in both ABP (<i>p <</i>0.001) and heart rate (HR,<i>p <</i>0.001). A strong, linear decline in AC and DC (<i>p <</i>0.001 for both) was observed with increasing breathing rate. All entropy metrics increased with breathing frequency (<i>p <</i>0.001). In the time-domain, HRV metrics significantly decreased with breathing frequency (<i>p <</i>0.01 for all). In the frequency-domain, HRV LF and HRV HF decreased (<i>p</i>= 0.038 and<i>p</i>= 0.040, respectively), although these changes were modest. There was no significant change in HRV TP with breathing frequencies.<i>Significance.</i>Alterations in CO<sub>2</sub>levels, a potent chemoreceptor trigger, and changes in HR most likely modulate ANS metrics. Non-linear PRSA and entropy appear to be more sensitive to breathing stimuli compared to frequency-dependent HRV metrics. Further research involving a larger cohort of healthy subjects is needed to validate our observations.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad7778\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad7778","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
The impact of controlled breathing on autonomic nervous system modulation: analysis using phase-rectified signal averaging, entropy and heart rate variability.
Objective.The present study investigated how breathing stimuli affect both non-linear and linear metrics of the autonomic nervous system (ANS).Approach.The analysed dataset consisted of 70 young, healthy volunteers, in whom arterial blood pressure (ABP) was measured noninvasively during 5 min sessions of controlled breathing at three different frequencies: 6, 10 and 15 breaths min-1. CO2concentration and respiratory rate were continuously monitored throughout the controlled breathing sessions. The ANS was characterized using non-linear methods, including phase-rectified signal averaging (PRSA) for estimating heart acceleration and deceleration capacity (AC, DC), multiscale entropy, approximate entropy, sample entropy, and fuzzy entropy, as well as time and frequency-domain measures (low frequency, LF; high-frequency, HF; total power, TP) of heart rate variability (HRV).Main results.Higher breathing rates resulted in a significant decrease in end-tidal CO2concentration (p< 0.001), accompanied by increases in both ABP (p <0.001) and heart rate (HR,p <0.001). A strong, linear decline in AC and DC (p <0.001 for both) was observed with increasing breathing rate. All entropy metrics increased with breathing frequency (p <0.001). In the time-domain, HRV metrics significantly decreased with breathing frequency (p <0.01 for all). In the frequency-domain, HRV LF and HRV HF decreased (p= 0.038 andp= 0.040, respectively), although these changes were modest. There was no significant change in HRV TP with breathing frequencies.Significance.Alterations in CO2levels, a potent chemoreceptor trigger, and changes in HR most likely modulate ANS metrics. Non-linear PRSA and entropy appear to be more sensitive to breathing stimuli compared to frequency-dependent HRV metrics. Further research involving a larger cohort of healthy subjects is needed to validate our observations.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.