多发性硬化症的预后模型:临床整合的进展与挑战。

Joachim Havla, Kelly Reeve, Begum Irmak On, Ulrich Mansmann, Ulrike Held
{"title":"多发性硬化症的预后模型:临床整合的进展与挑战。","authors":"Joachim Havla, Kelly Reeve, Begum Irmak On, Ulrich Mansmann, Ulrike Held","doi":"10.1186/s42466-024-00338-z","DOIUrl":null,"url":null,"abstract":"<p><p>As a chronic inflammatory disease of the central nervous system, multiple sclerosis (MS) is of great individual health and socio-economic significance. To date, there is no prognostic model that is used in routine clinical care to predict the very heterogeneous course of the disease. Despite several research groups working on different prognostic models using traditional statistics, machine learning and/or artificial intelligence approaches, the use of published models in clinical decision making is limited because of poor model performance, lack of transferability and/or lack of validated models. To provide a systematic overview, we conducted a \"Cochrane review\" that assessed 75 published prediction models using relevant checklists (CHARMS, PROBAST, TRIPOD). We have summarized the relevant points from this analysis here so that the use of prognostic models for therapy decisions in clinical routine can be successful in the future.</p>","PeriodicalId":94156,"journal":{"name":"Neurological research and practice","volume":"6 1","pages":"44"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376049/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prognostic models in multiple sclerosis: progress and challenges in clinical integration.\",\"authors\":\"Joachim Havla, Kelly Reeve, Begum Irmak On, Ulrich Mansmann, Ulrike Held\",\"doi\":\"10.1186/s42466-024-00338-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As a chronic inflammatory disease of the central nervous system, multiple sclerosis (MS) is of great individual health and socio-economic significance. To date, there is no prognostic model that is used in routine clinical care to predict the very heterogeneous course of the disease. Despite several research groups working on different prognostic models using traditional statistics, machine learning and/or artificial intelligence approaches, the use of published models in clinical decision making is limited because of poor model performance, lack of transferability and/or lack of validated models. To provide a systematic overview, we conducted a \\\"Cochrane review\\\" that assessed 75 published prediction models using relevant checklists (CHARMS, PROBAST, TRIPOD). We have summarized the relevant points from this analysis here so that the use of prognostic models for therapy decisions in clinical routine can be successful in the future.</p>\",\"PeriodicalId\":94156,\"journal\":{\"name\":\"Neurological research and practice\",\"volume\":\"6 1\",\"pages\":\"44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376049/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurological research and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42466-024-00338-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological research and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42466-024-00338-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)是中枢神经系统的一种慢性炎症性疾病,对个人健康和社会经济意义重大。迄今为止,还没有一个可用于常规临床治疗的预后模型来预测该疾病的不同病程。尽管有多个研究小组使用传统统计学、机器学习和/或人工智能方法研究不同的预后模型,但由于模型性能不佳、缺乏可移植性和/或缺乏经过验证的模型,已发表的模型在临床决策中的应用受到了限制。为了提供系统性概述,我们进行了一项 "Cochrane 回顾",使用相关核对表(CHARMS、PROBAST、TRIPOD)评估了 75 个已发表的预测模型。我们在此总结了这一分析的相关要点,以便今后在临床常规治疗决策中成功使用预后模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prognostic models in multiple sclerosis: progress and challenges in clinical integration.

As a chronic inflammatory disease of the central nervous system, multiple sclerosis (MS) is of great individual health and socio-economic significance. To date, there is no prognostic model that is used in routine clinical care to predict the very heterogeneous course of the disease. Despite several research groups working on different prognostic models using traditional statistics, machine learning and/or artificial intelligence approaches, the use of published models in clinical decision making is limited because of poor model performance, lack of transferability and/or lack of validated models. To provide a systematic overview, we conducted a "Cochrane review" that assessed 75 published prediction models using relevant checklists (CHARMS, PROBAST, TRIPOD). We have summarized the relevant points from this analysis here so that the use of prognostic models for therapy decisions in clinical routine can be successful in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Ischemia/reperfusion injury in acute human and experimental stroke: focus on thrombo-inflammatory mechanisms and treatments. Letter to the editor in response to Professor Josef Finsterer. MS brain health quality standards: a survey on the reality in clinical practice in Germany. Chikungunya-related Guillain-Barre syndrome is most commonly demyelinating and affects multiple cranial nerves. Prevalence of comorbid autoimmune diseases and antibodies in newly diagnosed multiple sclerosis patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1