商用线性聚乙烯与低缠结超高分子量聚乙烯的熔融共混:从分散相容性到粘弹性缩放定律

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-08-30 DOI:10.1016/j.polymer.2024.127563
{"title":"商用线性聚乙烯与低缠结超高分子量聚乙烯的熔融共混:从分散相容性到粘弹性缩放定律","authors":"","doi":"10.1016/j.polymer.2024.127563","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the dispersion and compatibility of low-entangled “dis-entangled” UHMWPE (dis-UH) in a high-density polyethylene (HDPE) matrix using solvent-free melt-blending conditions and compares it with entangled UHMWPE (eUH) in the same matrix. The findings reveal that dis-UH/HDPE exhibits a significantly lower viscosity ratio than eUH/HDPE (1 and 4, respectively), indicating a lower critical capillary number (<strong>C</strong>a<sub>critical</sub>), thus enhanced dispersion and compatibility. Blends with varying dis-UH content up to 20 wt% show homogeneity, evidenced by DSC and SEM analysis, and demonstrate improved mechanical properties by 36 % in the maximum stress (<strong><em>σ</em></strong><sub><strong>max</strong></sub>) and 39 % in Young's modulus (<strong>E</strong>). Linear viscoelasticity assessments reveal that higher dis-UH content slow the dynamics and increase the apparent weight average molecular weight (<strong><em>M</em></strong><sub><em>w</em></sub>), consistent with previous reports for linear entangled PE. The zero-shear viscosity (<span><math><mrow><msub><mi>η</mi><mn>0</mn></msub><mo>)</mo></mrow></math></span> scaling with <strong><em>M</em></strong><sub><em>w</em></sub> (<strong><em>η</em></strong><sub><em>0</em></sub> <span><math><mrow><mo>∝</mo></mrow></math></span> <strong><em>M</em></strong> <sup><em>n</em></sup><em>)</em> is adjusted for high polydispersity, yielding a transitional point in the scaling exponent (<strong><em>n</em></strong>) from 3.6 to 3 at a reptation number of entanglement segments (<strong><em>M</em></strong><sub><em>r</em></sub><em>/</em><strong><em>M</em></strong><sub><em>e</em></sub>) of ∼287, in line with theoretical predictions. To rationalize the success of the homogenization process, we propose a qualitative molecular picture inspired from the constraint release Rouse mechanism involved in the disorientation process of bi-disperse linear polymers. In the case of dis-UH/HDPE blends, with initially lower density of long-long entanglements within dis-UH, and the highest density of short-short entanglements within HDPE matrix, the formation of long-short entanglements between dis-UH and HDPE is facilitated, which results in successful homogenization process. In the contrary, the establishment of long-short entanglements in eUH/HDPE blends will require unwinding of the long-long entanglements, which holds a higher kinetic barrier compared to dis-UH/HDPE blends, leading to unsuccessful homogenization.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melt blending of commercial linear polyethylene with low-entangled ultra-high molecular weight polyethylene: From dispersion compatibility to viscoelastic scaling laws\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the dispersion and compatibility of low-entangled “dis-entangled” UHMWPE (dis-UH) in a high-density polyethylene (HDPE) matrix using solvent-free melt-blending conditions and compares it with entangled UHMWPE (eUH) in the same matrix. The findings reveal that dis-UH/HDPE exhibits a significantly lower viscosity ratio than eUH/HDPE (1 and 4, respectively), indicating a lower critical capillary number (<strong>C</strong>a<sub>critical</sub>), thus enhanced dispersion and compatibility. Blends with varying dis-UH content up to 20 wt% show homogeneity, evidenced by DSC and SEM analysis, and demonstrate improved mechanical properties by 36 % in the maximum stress (<strong><em>σ</em></strong><sub><strong>max</strong></sub>) and 39 % in Young's modulus (<strong>E</strong>). Linear viscoelasticity assessments reveal that higher dis-UH content slow the dynamics and increase the apparent weight average molecular weight (<strong><em>M</em></strong><sub><em>w</em></sub>), consistent with previous reports for linear entangled PE. The zero-shear viscosity (<span><math><mrow><msub><mi>η</mi><mn>0</mn></msub><mo>)</mo></mrow></math></span> scaling with <strong><em>M</em></strong><sub><em>w</em></sub> (<strong><em>η</em></strong><sub><em>0</em></sub> <span><math><mrow><mo>∝</mo></mrow></math></span> <strong><em>M</em></strong> <sup><em>n</em></sup><em>)</em> is adjusted for high polydispersity, yielding a transitional point in the scaling exponent (<strong><em>n</em></strong>) from 3.6 to 3 at a reptation number of entanglement segments (<strong><em>M</em></strong><sub><em>r</em></sub><em>/</em><strong><em>M</em></strong><sub><em>e</em></sub>) of ∼287, in line with theoretical predictions. To rationalize the success of the homogenization process, we propose a qualitative molecular picture inspired from the constraint release Rouse mechanism involved in the disorientation process of bi-disperse linear polymers. In the case of dis-UH/HDPE blends, with initially lower density of long-long entanglements within dis-UH, and the highest density of short-short entanglements within HDPE matrix, the formation of long-short entanglements between dis-UH and HDPE is facilitated, which results in successful homogenization process. In the contrary, the establishment of long-short entanglements in eUH/HDPE blends will require unwinding of the long-long entanglements, which holds a higher kinetic barrier compared to dis-UH/HDPE blends, leading to unsuccessful homogenization.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124008991\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124008991","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用无溶剂熔融混合条件,研究了低缠结超高分子量聚乙烯(dis-UH)在高密度聚乙烯(HDPE)基体中的分散性和相容性,并与相同基体中的缠结超高分子量聚乙烯(eUH)进行了比较。研究结果表明,dis-UH/HDPE 的粘度比(分别为 1 和 4)明显低于 eUH/HDPE,这表明临界毛细管数(Cacritical)更低,从而提高了分散性和相容性。DSC 和 SEM 分析表明,dis-UH 含量最高为 20 wt% 的混合物具有均匀性,最大应力 (σmax) 和杨氏模量 (E) 分别提高了 36% 和 39%。线性粘弹性评估结果表明,Dis-UH 含量越高,动态变化越慢,表观平均分子量(Mw)越大,这与之前关于线性缠结聚乙烯的报告一致。零剪切粘度(η0)与 Mw 的比例(η0 ∝ M n)随高多分散性而调整,在纠缠段数(Mr/Me)为 287 时,比例指数(n)从 3.6 到 3 的过渡点,与理论预测一致。为了合理解释均质化过程的成功,我们从双分散线性聚合物失向过程中涉及的约束释放劳斯机制中获得启发,提出了一种定性分子图谱。在二硫化氢/高密度聚乙烯共混物中,二硫化氢内部的长-长缠结密度最初较低,而高密度聚乙烯基体内部的短-短缠结密度最高,这就促进了二硫化氢和高密度聚乙烯之间长-短缠结的形成,从而成功实现了均质化过程。相反,在 eUH/HDPE 混合物中建立长短缠结需要解开长长缠结,这与 dis-UH/HDPE 混合物相比具有更高的动力学障碍,从而导致均化不成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Melt blending of commercial linear polyethylene with low-entangled ultra-high molecular weight polyethylene: From dispersion compatibility to viscoelastic scaling laws

This study investigates the dispersion and compatibility of low-entangled “dis-entangled” UHMWPE (dis-UH) in a high-density polyethylene (HDPE) matrix using solvent-free melt-blending conditions and compares it with entangled UHMWPE (eUH) in the same matrix. The findings reveal that dis-UH/HDPE exhibits a significantly lower viscosity ratio than eUH/HDPE (1 and 4, respectively), indicating a lower critical capillary number (Cacritical), thus enhanced dispersion and compatibility. Blends with varying dis-UH content up to 20 wt% show homogeneity, evidenced by DSC and SEM analysis, and demonstrate improved mechanical properties by 36 % in the maximum stress (σmax) and 39 % in Young's modulus (E). Linear viscoelasticity assessments reveal that higher dis-UH content slow the dynamics and increase the apparent weight average molecular weight (Mw), consistent with previous reports for linear entangled PE. The zero-shear viscosity (η0) scaling with Mw (η0 M n) is adjusted for high polydispersity, yielding a transitional point in the scaling exponent (n) from 3.6 to 3 at a reptation number of entanglement segments (Mr/Me) of ∼287, in line with theoretical predictions. To rationalize the success of the homogenization process, we propose a qualitative molecular picture inspired from the constraint release Rouse mechanism involved in the disorientation process of bi-disperse linear polymers. In the case of dis-UH/HDPE blends, with initially lower density of long-long entanglements within dis-UH, and the highest density of short-short entanglements within HDPE matrix, the formation of long-short entanglements between dis-UH and HDPE is facilitated, which results in successful homogenization process. In the contrary, the establishment of long-short entanglements in eUH/HDPE blends will require unwinding of the long-long entanglements, which holds a higher kinetic barrier compared to dis-UH/HDPE blends, leading to unsuccessful homogenization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Synergistic integration of plant derived galactomannan and MXene to produce multifunctional nanocomposites with antibacterial and osteogenic properties Ultra-tough, strong and transparent bio-based waterborne polyurethanes with exceptional anti-corrosion properties In-situ fabricated hexagonal PDMS microsphere arrays for substrate-mode light extraction in blue fluorescent organic light emitting diodes Matching Combination of Amorphous Ionic Hydrogel with Elastic Fabric Enables Integrated Properties for Wearable Sensing Effects of crosslinked rubber particles on rheological behaviors of ethylene-propylene-diene rubber/ polypropylene thermoplastic vulcanizates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1