Rakib Hossen , Md. Selim Hossain , Sadia Afrin Mim , Md. Al-Amin , Sabbir Ahmed , Md. Ashrafuzzaman , Md. Ashiq Salahin , Shuvo Sen
{"title":"设计基于六角形光谱的结核病检测生物传感器","authors":"Rakib Hossen , Md. Selim Hossain , Sadia Afrin Mim , Md. Al-Amin , Sabbir Ahmed , Md. Ashrafuzzaman , Md. Ashiq Salahin , Shuvo Sen","doi":"10.1016/j.sbsr.2024.100682","DOIUrl":null,"url":null,"abstract":"<div><p>A proposal has been made to identify tuberculosis cells using a novel compact sensor based on photonic crystal fiber: PCF in accordance with hexagonal spectroscopy. This proposed structure, which consists of a closely packed hexagonal air hole in the cladding region and a hollow-core area, possesses a very low loss of 6.30 × 10<sup>−8</sup> dB/m and an exceptionally high sensitivity of up to 91.75 % (tuberculosis cell for 1.345). Numerous optical parameters have been identified and assessed, comprised of the numerical aperture, the V-parameter, or normalized frequency (V<sub>eff</sub>), and the effective area (A<sub>eff</sub>). The operational wavelength range is defined as 0.80–3.0 THz. The numerical investigation of the properties of the proposed TB sensors is performed within the environment of COMSOL Multiphysics (Version 5.3) using FV-FEM stands for the full vector finite element method. PCF sensors composed of hexagonal lattice in a circular form with ZEONEX as the backdrop material is intended to boost the sensitivity response in comparison to the earlier works. Additionally, the sensor that is being displayed achieves a single modality throughout its whole operational wavelength range. This proposed sensor may play a significant role in identifying tuberculosis thanks to its superior sensitivity response and extremely minimal confinement loss. So, it is clearly seen that this sensor could be used to bio-medical sectors with process of terahertz (THz) wave pulse.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"45 ","pages":"Article 100682"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000643/pdfft?md5=7c54a42c5e807d84b2c1af5ebcafa53e&pid=1-s2.0-S2214180424000643-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design of hexagonal shaped spectroscopy based biosensor for the detection of tuberculosis\",\"authors\":\"Rakib Hossen , Md. Selim Hossain , Sadia Afrin Mim , Md. Al-Amin , Sabbir Ahmed , Md. Ashrafuzzaman , Md. Ashiq Salahin , Shuvo Sen\",\"doi\":\"10.1016/j.sbsr.2024.100682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A proposal has been made to identify tuberculosis cells using a novel compact sensor based on photonic crystal fiber: PCF in accordance with hexagonal spectroscopy. This proposed structure, which consists of a closely packed hexagonal air hole in the cladding region and a hollow-core area, possesses a very low loss of 6.30 × 10<sup>−8</sup> dB/m and an exceptionally high sensitivity of up to 91.75 % (tuberculosis cell for 1.345). Numerous optical parameters have been identified and assessed, comprised of the numerical aperture, the V-parameter, or normalized frequency (V<sub>eff</sub>), and the effective area (A<sub>eff</sub>). The operational wavelength range is defined as 0.80–3.0 THz. The numerical investigation of the properties of the proposed TB sensors is performed within the environment of COMSOL Multiphysics (Version 5.3) using FV-FEM stands for the full vector finite element method. PCF sensors composed of hexagonal lattice in a circular form with ZEONEX as the backdrop material is intended to boost the sensitivity response in comparison to the earlier works. Additionally, the sensor that is being displayed achieves a single modality throughout its whole operational wavelength range. This proposed sensor may play a significant role in identifying tuberculosis thanks to its superior sensitivity response and extremely minimal confinement loss. So, it is clearly seen that this sensor could be used to bio-medical sectors with process of terahertz (THz) wave pulse.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"45 \",\"pages\":\"Article 100682\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000643/pdfft?md5=7c54a42c5e807d84b2c1af5ebcafa53e&pid=1-s2.0-S2214180424000643-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Design of hexagonal shaped spectroscopy based biosensor for the detection of tuberculosis
A proposal has been made to identify tuberculosis cells using a novel compact sensor based on photonic crystal fiber: PCF in accordance with hexagonal spectroscopy. This proposed structure, which consists of a closely packed hexagonal air hole in the cladding region and a hollow-core area, possesses a very low loss of 6.30 × 10−8 dB/m and an exceptionally high sensitivity of up to 91.75 % (tuberculosis cell for 1.345). Numerous optical parameters have been identified and assessed, comprised of the numerical aperture, the V-parameter, or normalized frequency (Veff), and the effective area (Aeff). The operational wavelength range is defined as 0.80–3.0 THz. The numerical investigation of the properties of the proposed TB sensors is performed within the environment of COMSOL Multiphysics (Version 5.3) using FV-FEM stands for the full vector finite element method. PCF sensors composed of hexagonal lattice in a circular form with ZEONEX as the backdrop material is intended to boost the sensitivity response in comparison to the earlier works. Additionally, the sensor that is being displayed achieves a single modality throughout its whole operational wavelength range. This proposed sensor may play a significant role in identifying tuberculosis thanks to its superior sensitivity response and extremely minimal confinement loss. So, it is clearly seen that this sensor could be used to bio-medical sectors with process of terahertz (THz) wave pulse.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.