迈向碳中和城市:用于绘制布鲁塞尔树木碳储量图的 Sentinel 2 和 WorldView 3 卫星图像处理比较分析

IF 6 2区 环境科学与生态学 Q1 ENVIRONMENTAL STUDIES Urban Forestry & Urban Greening Pub Date : 2024-08-31 DOI:10.1016/j.ufug.2024.128495
{"title":"迈向碳中和城市:用于绘制布鲁塞尔树木碳储量图的 Sentinel 2 和 WorldView 3 卫星图像处理比较分析","authors":"","doi":"10.1016/j.ufug.2024.128495","DOIUrl":null,"url":null,"abstract":"<div><p>Because of the high costs associated with data sources, urban policymakers struggle to employ cost-effective remote sensing methods for evaluating trees and their potential contributions to atmospheric Carbon Stock (CS). While free data sources like Copernicus Sentinel satellite data could be explored, there are a few studies illustrating its potential for mapping urban tree C. Here, the Sentinel 2 (S2)-derived Normalized Difference Vegetation Index (NDVI) was used to model CS for street trees in Brussels. In parallel, the WorldView 3 (WV3)-derived NDVI layer was also used for a similar study area to compare the CS mapping outcomes regarding dominant tree species. The accuracy level was around 90 % (R²=0.89, r=0.94, and RMSE= 97 kg) in the case of WV3 data, whereas it was about 60 % (R²=0.60, r=0.79, and RMSE = 189.6 kg), even with a coarse resolution regarding the S2 data. This study also shows the strength and scope of using S2 data over WV3 data, illustrating the convenience in terms of accuracy and cost-effectiveness compared to existing methods. The applied methodology could be utilized to monitor urban trees and predict the level of possible carbon sequestration, even considering a larger city like Brussels with a complex agglomeration. It could be a solid additional support for the authorities of European towns and developing countries, especially in terms of being cost-efficient and readily embraced by users.</p></div>","PeriodicalId":49394,"journal":{"name":"Urban Forestry & Urban Greening","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1618866724002930/pdfft?md5=d5e2b38137963deac52f0fc225ebab2d&pid=1-s2.0-S1618866724002930-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Toward carbon neutral cities: A comparative analysis between Sentinel 2 and WorldView 3 satellite image processing for tree carbon stock mapping in Brussels\",\"authors\":\"\",\"doi\":\"10.1016/j.ufug.2024.128495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Because of the high costs associated with data sources, urban policymakers struggle to employ cost-effective remote sensing methods for evaluating trees and their potential contributions to atmospheric Carbon Stock (CS). While free data sources like Copernicus Sentinel satellite data could be explored, there are a few studies illustrating its potential for mapping urban tree C. Here, the Sentinel 2 (S2)-derived Normalized Difference Vegetation Index (NDVI) was used to model CS for street trees in Brussels. In parallel, the WorldView 3 (WV3)-derived NDVI layer was also used for a similar study area to compare the CS mapping outcomes regarding dominant tree species. The accuracy level was around 90 % (R²=0.89, r=0.94, and RMSE= 97 kg) in the case of WV3 data, whereas it was about 60 % (R²=0.60, r=0.79, and RMSE = 189.6 kg), even with a coarse resolution regarding the S2 data. This study also shows the strength and scope of using S2 data over WV3 data, illustrating the convenience in terms of accuracy and cost-effectiveness compared to existing methods. The applied methodology could be utilized to monitor urban trees and predict the level of possible carbon sequestration, even considering a larger city like Brussels with a complex agglomeration. It could be a solid additional support for the authorities of European towns and developing countries, especially in terms of being cost-efficient and readily embraced by users.</p></div>\",\"PeriodicalId\":49394,\"journal\":{\"name\":\"Urban Forestry & Urban Greening\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1618866724002930/pdfft?md5=d5e2b38137963deac52f0fc225ebab2d&pid=1-s2.0-S1618866724002930-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Forestry & Urban Greening\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1618866724002930\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Forestry & Urban Greening","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1618866724002930","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

由于数据源成本高昂,城市决策者很难采用具有成本效益的遥感方法来评估树木及其对大气碳储量(CS)的潜在贡献。虽然可以探索哥白尼哨兵卫星数据等免费数据源,但只有少数研究说明了其在绘制城市树木碳储量图方面的潜力。在这里,哨兵 2 号(S2)得出的归一化差异植被指数(NDVI)被用于为布鲁塞尔的行道树建立碳储量模型。与此同时,WorldView 3 (WV3) 导出的归一化差异植被指数层也被用于类似的研究区域,以比较主要树种的 CS 测绘结果。WV3 数据的准确度约为 90%(R²=0.89,r=0.94,RMSE=97 千克),而 S2 数据即使分辨率较低,准确度也约为 60%(R²=0.60,r=0.79,RMSE=189.6 千克)。这项研究还显示了使用 S2 数据而非 WV3 数据的优势和范围,说明了与现有方法相比,S2 数据在准确性和成本效益方面的便利性。所应用的方法可用于监测城市树木并预测可能的碳封存水平,即使是像布鲁塞尔这样拥有复杂城市群的大城市也不例外。它可以为欧洲城镇和发展中国家的当局提供坚实的额外支持,尤其是在成本效益和用户接受度方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward carbon neutral cities: A comparative analysis between Sentinel 2 and WorldView 3 satellite image processing for tree carbon stock mapping in Brussels

Because of the high costs associated with data sources, urban policymakers struggle to employ cost-effective remote sensing methods for evaluating trees and their potential contributions to atmospheric Carbon Stock (CS). While free data sources like Copernicus Sentinel satellite data could be explored, there are a few studies illustrating its potential for mapping urban tree C. Here, the Sentinel 2 (S2)-derived Normalized Difference Vegetation Index (NDVI) was used to model CS for street trees in Brussels. In parallel, the WorldView 3 (WV3)-derived NDVI layer was also used for a similar study area to compare the CS mapping outcomes regarding dominant tree species. The accuracy level was around 90 % (R²=0.89, r=0.94, and RMSE= 97 kg) in the case of WV3 data, whereas it was about 60 % (R²=0.60, r=0.79, and RMSE = 189.6 kg), even with a coarse resolution regarding the S2 data. This study also shows the strength and scope of using S2 data over WV3 data, illustrating the convenience in terms of accuracy and cost-effectiveness compared to existing methods. The applied methodology could be utilized to monitor urban trees and predict the level of possible carbon sequestration, even considering a larger city like Brussels with a complex agglomeration. It could be a solid additional support for the authorities of European towns and developing countries, especially in terms of being cost-efficient and readily embraced by users.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
12.50%
发文量
289
审稿时长
70 days
期刊介绍: Urban Forestry and Urban Greening is a refereed, international journal aimed at presenting high-quality research with urban and peri-urban woody and non-woody vegetation and its use, planning, design, establishment and management as its main topics. Urban Forestry and Urban Greening concentrates on all tree-dominated (as joint together in the urban forest) as well as other green resources in and around urban areas, such as woodlands, public and private urban parks and gardens, urban nature areas, street tree and square plantations, botanical gardens and cemeteries. The journal welcomes basic and applied research papers, as well as review papers and short communications. Contributions should focus on one or more of the following aspects: -Form and functions of urban forests and other vegetation, including aspects of urban ecology. -Policy-making, planning and design related to urban forests and other vegetation. -Selection and establishment of tree resources and other vegetation for urban environments. -Management of urban forests and other vegetation. Original contributions of a high academic standard are invited from a wide range of disciplines and fields, including forestry, biology, horticulture, arboriculture, landscape ecology, pathology, soil science, hydrology, landscape architecture, landscape planning, urban planning and design, economics, sociology, environmental psychology, public health, and education.
期刊最新文献
Temporal variation in travel greenery across 86 cities in Europe Urban street tree species identification and factor interpretation model based on natural images Renaturalisation and natural rewilding of the Manzanares river in Madrid, Spain: Mapping recreation potential and actual use Sacred sites provide urban green spaces that maintain bird diversity in the megacity of Tokyo, Japan Unirrigated extensive green roofs in humid subtropics – Plant selection and substrate design for low maintenance and climate resilience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1