Ming Ma, Jun Zeng, Mengli Zhu, Hui Li, Tao Lin, Hao Yang, Xin Wei, Turun Song
{"title":"通过抑制衰老的肾小管上皮细胞改善肾缺血再灌注损伤--实验研究。","authors":"Ming Ma, Jun Zeng, Mengli Zhu, Hui Li, Tao Lin, Hao Yang, Xin Wei, Turun Song","doi":"10.1097/JS9.0000000000002074","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human umbilical cord mesenchymal stem cells derived extracellular vesicles (HUMSC-EVs) have drawn much interest in kidney transplantation, mainly because of their renoprotection by alleviating cell injury and stimulating tissue repair. Cellular senescence has been proven to play a dual regulatory role in kidney ischemia-reperfusion injury (IRI), and the regulation of HUMSC-EVs on tubular epithelial cell senescence may be a potential therapeutic target.</p><p><strong>Materials and methods: </strong>In vitro, the hypoxia-reoxygenation of human kidney-2 cells was used to simulate kidney IRI, and the regulation of HUMSC-EVs on human kidney-2 cells was detected. Transcriptome sequencing of human kidney-2 cells was used to explore the potential regulatory mechanism. In vivo, adult male mice were divided into five groups: control group, IRI group, HUMSC-EVs treatment group, senolytics treatment group (dasatinib + quercetin), and combined treatments group (HUMSC-EVs and senolytics). Kidney function, senescent features of tubular epithelial cells, acute kidney injury, and chronic interstitial fibrosis in mice were detected to explore the renoprotection effects of HUMSC-EVs.</p><p><strong>Results: </strong>Kidney IRI significantly up-regulated expressions of LaminB1, p53, p21, p16, senescence-associated beta-galactosidase, and apoptosis of tubular epithelial cells. In the mouse kidney IRI model, kidney subcapsular injection of HUMSC-EVs significantly improved kidney function, reducing the senescent features of tubular epithelial cells and alleviating acute kidney injury and chronic interstitial fibrosis. HUMSC-EVs mainly achieved renoprotection by regulating Bax/Bcl-2-dependent apoptosis during acute kidney injury and mostly reduced tubular atrophy and kidney interstitial fibrosis by regulating Ras-pERK-Ets1-p53 pathway-dependent cell senescence. Oral administration of senolytics also alleviated kidney injury induced by IRI, while the combined treatments of HUMSC-EVs and senolytics had better renoprotection effects.</p><p><strong>Conclusions: </strong>The combination of HUMSC-EVs and senolytics alleviated acute kidney injury and chronic interstitial fibrosis by dynamic regulation of cell senescence and apoptosis, which provides a therapeutic potential strategy for organ preservation and tissue repair in kidney transplantation.</p>","PeriodicalId":14401,"journal":{"name":"International journal of surgery","volume":null,"pages":null},"PeriodicalIF":12.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human umbilical cord mesenchymal stem cells derived extracellular vesicles ameliorate kidney ischemia-reperfusion injury by suppression of senescent tubular epithelial cells - Experimental Study.\",\"authors\":\"Ming Ma, Jun Zeng, Mengli Zhu, Hui Li, Tao Lin, Hao Yang, Xin Wei, Turun Song\",\"doi\":\"10.1097/JS9.0000000000002074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Human umbilical cord mesenchymal stem cells derived extracellular vesicles (HUMSC-EVs) have drawn much interest in kidney transplantation, mainly because of their renoprotection by alleviating cell injury and stimulating tissue repair. Cellular senescence has been proven to play a dual regulatory role in kidney ischemia-reperfusion injury (IRI), and the regulation of HUMSC-EVs on tubular epithelial cell senescence may be a potential therapeutic target.</p><p><strong>Materials and methods: </strong>In vitro, the hypoxia-reoxygenation of human kidney-2 cells was used to simulate kidney IRI, and the regulation of HUMSC-EVs on human kidney-2 cells was detected. Transcriptome sequencing of human kidney-2 cells was used to explore the potential regulatory mechanism. In vivo, adult male mice were divided into five groups: control group, IRI group, HUMSC-EVs treatment group, senolytics treatment group (dasatinib + quercetin), and combined treatments group (HUMSC-EVs and senolytics). Kidney function, senescent features of tubular epithelial cells, acute kidney injury, and chronic interstitial fibrosis in mice were detected to explore the renoprotection effects of HUMSC-EVs.</p><p><strong>Results: </strong>Kidney IRI significantly up-regulated expressions of LaminB1, p53, p21, p16, senescence-associated beta-galactosidase, and apoptosis of tubular epithelial cells. In the mouse kidney IRI model, kidney subcapsular injection of HUMSC-EVs significantly improved kidney function, reducing the senescent features of tubular epithelial cells and alleviating acute kidney injury and chronic interstitial fibrosis. HUMSC-EVs mainly achieved renoprotection by regulating Bax/Bcl-2-dependent apoptosis during acute kidney injury and mostly reduced tubular atrophy and kidney interstitial fibrosis by regulating Ras-pERK-Ets1-p53 pathway-dependent cell senescence. Oral administration of senolytics also alleviated kidney injury induced by IRI, while the combined treatments of HUMSC-EVs and senolytics had better renoprotection effects.</p><p><strong>Conclusions: </strong>The combination of HUMSC-EVs and senolytics alleviated acute kidney injury and chronic interstitial fibrosis by dynamic regulation of cell senescence and apoptosis, which provides a therapeutic potential strategy for organ preservation and tissue repair in kidney transplantation.</p>\",\"PeriodicalId\":14401,\"journal\":{\"name\":\"International journal of surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/JS9.0000000000002074\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/JS9.0000000000002074","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
Human umbilical cord mesenchymal stem cells derived extracellular vesicles ameliorate kidney ischemia-reperfusion injury by suppression of senescent tubular epithelial cells - Experimental Study.
Background: Human umbilical cord mesenchymal stem cells derived extracellular vesicles (HUMSC-EVs) have drawn much interest in kidney transplantation, mainly because of their renoprotection by alleviating cell injury and stimulating tissue repair. Cellular senescence has been proven to play a dual regulatory role in kidney ischemia-reperfusion injury (IRI), and the regulation of HUMSC-EVs on tubular epithelial cell senescence may be a potential therapeutic target.
Materials and methods: In vitro, the hypoxia-reoxygenation of human kidney-2 cells was used to simulate kidney IRI, and the regulation of HUMSC-EVs on human kidney-2 cells was detected. Transcriptome sequencing of human kidney-2 cells was used to explore the potential regulatory mechanism. In vivo, adult male mice were divided into five groups: control group, IRI group, HUMSC-EVs treatment group, senolytics treatment group (dasatinib + quercetin), and combined treatments group (HUMSC-EVs and senolytics). Kidney function, senescent features of tubular epithelial cells, acute kidney injury, and chronic interstitial fibrosis in mice were detected to explore the renoprotection effects of HUMSC-EVs.
Results: Kidney IRI significantly up-regulated expressions of LaminB1, p53, p21, p16, senescence-associated beta-galactosidase, and apoptosis of tubular epithelial cells. In the mouse kidney IRI model, kidney subcapsular injection of HUMSC-EVs significantly improved kidney function, reducing the senescent features of tubular epithelial cells and alleviating acute kidney injury and chronic interstitial fibrosis. HUMSC-EVs mainly achieved renoprotection by regulating Bax/Bcl-2-dependent apoptosis during acute kidney injury and mostly reduced tubular atrophy and kidney interstitial fibrosis by regulating Ras-pERK-Ets1-p53 pathway-dependent cell senescence. Oral administration of senolytics also alleviated kidney injury induced by IRI, while the combined treatments of HUMSC-EVs and senolytics had better renoprotection effects.
Conclusions: The combination of HUMSC-EVs and senolytics alleviated acute kidney injury and chronic interstitial fibrosis by dynamic regulation of cell senescence and apoptosis, which provides a therapeutic potential strategy for organ preservation and tissue repair in kidney transplantation.
期刊介绍:
The International Journal of Surgery (IJS) has a broad scope, encompassing all surgical specialties. Its primary objective is to facilitate the exchange of crucial ideas and lines of thought between and across these specialties.By doing so, the journal aims to counter the growing trend of increasing sub-specialization, which can result in "tunnel-vision" and the isolation of significant surgical advancements within specific specialties.