对结果变量进行基线和随访测量的倾向得分分析。

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-09-05 DOI:10.1002/pst.2436
Peter C Austin
{"title":"对结果变量进行基线和随访测量的倾向得分分析。","authors":"Peter C Austin","doi":"10.1002/pst.2436","DOIUrl":null,"url":null,"abstract":"<p><p>A common feature in cohort studies is when there is a baseline measurement of the continuous follow-up or outcome variable. Common examples include baseline measurements of physiological characteristics such as blood pressure or heart rate in studies where the outcome is post-baseline measurement of the same variable. Methods incorporating the propensity score are increasingly being used to estimate the effects of treatments using observational studies. We examined six methods for incorporating the baseline value of the follow-up variable when using propensity score matching or weighting. These methods differed according to whether the baseline value of the follow-up variable was included or excluded from the propensity score model, whether subsequent regression adjustment was conducted in the matched or weighted sample to adjust for the baseline value of the follow-up variable, and whether the analysis estimated the effect of treatment on the follow-up variable or on the change from baseline. We used Monte Carlo simulations with 750 scenarios. While no analytic method had uniformly superior performance, we provide the following recommendations: first, when using weighting and the ATE is the target estimand, use an augmented inverse probability weighted estimator or include the baseline value of the follow-up variable in the propensity score model and subsequently adjust for the baseline value of the follow-up variable in a regression model. Second, when the ATT is the target estimand, regardless of whether using weighting or matching, analyze change from baseline using a propensity score that excludes the baseline value of the follow-up variable.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propensity Score Analysis With Baseline and Follow-Up Measurements of the Outcome Variable.\",\"authors\":\"Peter C Austin\",\"doi\":\"10.1002/pst.2436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A common feature in cohort studies is when there is a baseline measurement of the continuous follow-up or outcome variable. Common examples include baseline measurements of physiological characteristics such as blood pressure or heart rate in studies where the outcome is post-baseline measurement of the same variable. Methods incorporating the propensity score are increasingly being used to estimate the effects of treatments using observational studies. We examined six methods for incorporating the baseline value of the follow-up variable when using propensity score matching or weighting. These methods differed according to whether the baseline value of the follow-up variable was included or excluded from the propensity score model, whether subsequent regression adjustment was conducted in the matched or weighted sample to adjust for the baseline value of the follow-up variable, and whether the analysis estimated the effect of treatment on the follow-up variable or on the change from baseline. We used Monte Carlo simulations with 750 scenarios. While no analytic method had uniformly superior performance, we provide the following recommendations: first, when using weighting and the ATE is the target estimand, use an augmented inverse probability weighted estimator or include the baseline value of the follow-up variable in the propensity score model and subsequently adjust for the baseline value of the follow-up variable in a regression model. Second, when the ATT is the target estimand, regardless of whether using weighting or matching, analyze change from baseline using a propensity score that excludes the baseline value of the follow-up variable.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2436\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2436","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

队列研究的一个共同特点是对连续随访变量或结果变量进行基线测量。常见的例子包括在研究中对血压或心率等生理特征进行基线测量,而结果则是对同一变量进行基线后测量。纳入倾向得分的方法越来越多地被用于利用观察性研究来估计治疗效果。我们研究了六种在使用倾向得分匹配或加权时纳入随访变量基线值的方法。这些方法的不同之处在于倾向得分模型中是否包含或排除了随访变量的基线值,是否在匹配样本或加权样本中进行了后续回归调整以调整随访变量的基线值,以及分析是否估算了治疗对随访变量或基线变化的影响。我们使用蒙特卡罗模拟法对 750 种情况进行了模拟。虽然没有哪种分析方法具有一致的优越性能,但我们还是提出了以下建议:首先,在使用加权法且 ATE 为目标估计值时,应使用增强的逆概率加权估计器,或在倾向评分模型中包含随访变量的基线值,然后在回归模型中对随访变量的基线值进行调整。其次,当 ATT 为目标估计值时,无论使用加权还是匹配,都应使用不包括随访变量基线值的倾向评分来分析与基线相比的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Propensity Score Analysis With Baseline and Follow-Up Measurements of the Outcome Variable.

A common feature in cohort studies is when there is a baseline measurement of the continuous follow-up or outcome variable. Common examples include baseline measurements of physiological characteristics such as blood pressure or heart rate in studies where the outcome is post-baseline measurement of the same variable. Methods incorporating the propensity score are increasingly being used to estimate the effects of treatments using observational studies. We examined six methods for incorporating the baseline value of the follow-up variable when using propensity score matching or weighting. These methods differed according to whether the baseline value of the follow-up variable was included or excluded from the propensity score model, whether subsequent regression adjustment was conducted in the matched or weighted sample to adjust for the baseline value of the follow-up variable, and whether the analysis estimated the effect of treatment on the follow-up variable or on the change from baseline. We used Monte Carlo simulations with 750 scenarios. While no analytic method had uniformly superior performance, we provide the following recommendations: first, when using weighting and the ATE is the target estimand, use an augmented inverse probability weighted estimator or include the baseline value of the follow-up variable in the propensity score model and subsequently adjust for the baseline value of the follow-up variable in a regression model. Second, when the ATT is the target estimand, regardless of whether using weighting or matching, analyze change from baseline using a propensity score that excludes the baseline value of the follow-up variable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
Beyond the Fragility Index. A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology. Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data. Subgroup Identification Based on Quantitative Objectives. A Bayesian Dynamic Model-Based Adaptive Design for Oncology Dose Optimization in Phase I/II Clinical Trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1