空间位置对分心干扰的影响

IF 2 4区 心理学 Q2 OPHTHALMOLOGY Journal of Vision Pub Date : 2024-09-03 DOI:10.1167/jov.24.9.4
Dirk Kerzel, Martin Constant
{"title":"空间位置对分心干扰的影响","authors":"Dirk Kerzel, Martin Constant","doi":"10.1167/jov.24.9.4","DOIUrl":null,"url":null,"abstract":"<p><p>When target and distractor stimuli are close together, they activate the same neurons and there is ambiguity as to what the neural activity represents. It has been suggested that the ambiguity is resolved by spatial competition between target and nontarget stimuli. A competitive advantage is conveyed by bottom-up biases (e.g., stimulus saliency) and top-down biases (e.g., the match to a stored representation of the target stimulus). Here, we tested the hypothesis that regions with high perceptual performance may provide a bottom-up bias, resulting in increased distractor interference. Initially, we focused on two known anisotropies. At equal distance from central fixation, perceptual performance is better along the horizontal than the vertical meridian, and in the lower than in the upper visual hemifield. Consistently, interference from distractors on the horizontal meridian was greater than interference from distractors on the vertical meridian. However, distractors in the lower hemifield interfered less than distractors in the upper visual hemifield, which is contrary to the known anisotropy. These results were obtained with targets and distractors on opposite meridians. Further, we observed greater interference from distractors on the meridians compared with distractors on the diagonals, possibly reflecting anisotropies in attentional scanning. Overall, the results are only partially consistent with the hypothesis that distractor interference is larger for distractors on regions with high perceptual performance.</p>","PeriodicalId":49955,"journal":{"name":"Journal of Vision","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382967/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of spatial location on distractor interference.\",\"authors\":\"Dirk Kerzel, Martin Constant\",\"doi\":\"10.1167/jov.24.9.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When target and distractor stimuli are close together, they activate the same neurons and there is ambiguity as to what the neural activity represents. It has been suggested that the ambiguity is resolved by spatial competition between target and nontarget stimuli. A competitive advantage is conveyed by bottom-up biases (e.g., stimulus saliency) and top-down biases (e.g., the match to a stored representation of the target stimulus). Here, we tested the hypothesis that regions with high perceptual performance may provide a bottom-up bias, resulting in increased distractor interference. Initially, we focused on two known anisotropies. At equal distance from central fixation, perceptual performance is better along the horizontal than the vertical meridian, and in the lower than in the upper visual hemifield. Consistently, interference from distractors on the horizontal meridian was greater than interference from distractors on the vertical meridian. However, distractors in the lower hemifield interfered less than distractors in the upper visual hemifield, which is contrary to the known anisotropy. These results were obtained with targets and distractors on opposite meridians. Further, we observed greater interference from distractors on the meridians compared with distractors on the diagonals, possibly reflecting anisotropies in attentional scanning. Overall, the results are only partially consistent with the hypothesis that distractor interference is larger for distractors on regions with high perceptual performance.</p>\",\"PeriodicalId\":49955,\"journal\":{\"name\":\"Journal of Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382967/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vision\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/jov.24.9.4\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vision","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/jov.24.9.4","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当目标刺激和干扰刺激靠近时,它们会激活相同的神经元,而神经活动所代表的内容则模糊不清。有人认为,这种模糊性是通过目标刺激和非目标刺激之间的空间竞争来解决的。竞争优势通过自下而上的偏差(如刺激的显著性)和自上而下的偏差(如与目标刺激的存储表征的匹配)来传递。在这里,我们测试了一个假设,即知觉性能高的区域可能会提供自下而上的偏向,从而导致分心干扰增加。起初,我们关注两个已知的各向异性。在与中心定点距离相等的情况下,沿水平经线的知觉表现优于垂直经线,下视半区的知觉表现优于上视半区。一致的是,水平经线上的干扰比垂直经线上的干扰大。然而,下半视场的分心物比上半视场的分心物干扰小,这与已知的各向异性相反。这些结果是在目标和干扰物位于相反经线上时得出的。此外,我们还观察到经线上的干扰物比对角线上的干扰物干扰更大,这可能反映了注意扫描的各向异性。总体而言,研究结果与 "感知能力强的区域上的分心物干扰更大 "这一假设只有部分吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of spatial location on distractor interference.

When target and distractor stimuli are close together, they activate the same neurons and there is ambiguity as to what the neural activity represents. It has been suggested that the ambiguity is resolved by spatial competition between target and nontarget stimuli. A competitive advantage is conveyed by bottom-up biases (e.g., stimulus saliency) and top-down biases (e.g., the match to a stored representation of the target stimulus). Here, we tested the hypothesis that regions with high perceptual performance may provide a bottom-up bias, resulting in increased distractor interference. Initially, we focused on two known anisotropies. At equal distance from central fixation, perceptual performance is better along the horizontal than the vertical meridian, and in the lower than in the upper visual hemifield. Consistently, interference from distractors on the horizontal meridian was greater than interference from distractors on the vertical meridian. However, distractors in the lower hemifield interfered less than distractors in the upper visual hemifield, which is contrary to the known anisotropy. These results were obtained with targets and distractors on opposite meridians. Further, we observed greater interference from distractors on the meridians compared with distractors on the diagonals, possibly reflecting anisotropies in attentional scanning. Overall, the results are only partially consistent with the hypothesis that distractor interference is larger for distractors on regions with high perceptual performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vision
Journal of Vision 医学-眼科学
CiteScore
2.90
自引率
5.60%
发文量
218
审稿时长
3-6 weeks
期刊介绍: Exploring all aspects of biological visual function, including spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics.
期刊最新文献
Individual differences reveal similarities in serial dependence effects across perceptual tasks, but not to oculomotor tasks. Investigating the relationship between subjective perception and unconscious feature integration. Binocular integration of chromatic and luminance signals. Deep convolutional neural networks are sensitive to face configuration. How the window of visibility varies around polar angle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1