Kirankumar Karkihalli Umesh, Julian Schulz, Julian Schmitt, Martin Weitz, Georg von Freymann, Frank Vewinger
{"title":"光量子气体中的维度交叉","authors":"Kirankumar Karkihalli Umesh, Julian Schulz, Julian Schmitt, Martin Weitz, Georg von Freymann, Frank Vewinger","doi":"10.1038/s41567-024-02641-7","DOIUrl":null,"url":null,"abstract":"The dimensionality of a system profoundly influences its physical behaviour, leading to the emergence of different states of matter in many-body quantum systems. In lower dimensions, fluctuations increase and lead to the suppression of long-range order. For example, in bosonic gases, Bose–Einstein condensation in one dimension requires stronger confinement than in two dimensions. Here we observe the dimensional crossover from one to two dimensions in a harmonically trapped photon gas and study its properties. The photons are trapped in a dye microcavity where polymer nanostructures provide the trapping potential for the photon gas. By varying the aspect ratio of the harmonic trap, we tune from isotropic two-dimensional confinement to an anisotropic, highly elongated one-dimensional trapping potential. Along this transition, we determine the caloric properties of the photon gas and find a softening of the second-order Bose–Einstein condensation phase transition observed in two dimensions to a crossover behaviour in one dimension. The dimensionality of a many-body system strongly impacts its physical behaviour. Now, a crossover from 1D to 2D has been observed in the Bose–Einstein condensate of a photon gas.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 11","pages":"1810-1815"},"PeriodicalIF":17.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensional crossover in a quantum gas of light\",\"authors\":\"Kirankumar Karkihalli Umesh, Julian Schulz, Julian Schmitt, Martin Weitz, Georg von Freymann, Frank Vewinger\",\"doi\":\"10.1038/s41567-024-02641-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dimensionality of a system profoundly influences its physical behaviour, leading to the emergence of different states of matter in many-body quantum systems. In lower dimensions, fluctuations increase and lead to the suppression of long-range order. For example, in bosonic gases, Bose–Einstein condensation in one dimension requires stronger confinement than in two dimensions. Here we observe the dimensional crossover from one to two dimensions in a harmonically trapped photon gas and study its properties. The photons are trapped in a dye microcavity where polymer nanostructures provide the trapping potential for the photon gas. By varying the aspect ratio of the harmonic trap, we tune from isotropic two-dimensional confinement to an anisotropic, highly elongated one-dimensional trapping potential. Along this transition, we determine the caloric properties of the photon gas and find a softening of the second-order Bose–Einstein condensation phase transition observed in two dimensions to a crossover behaviour in one dimension. The dimensionality of a many-body system strongly impacts its physical behaviour. Now, a crossover from 1D to 2D has been observed in the Bose–Einstein condensate of a photon gas.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"20 11\",\"pages\":\"1810-1815\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02641-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02641-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The dimensionality of a system profoundly influences its physical behaviour, leading to the emergence of different states of matter in many-body quantum systems. In lower dimensions, fluctuations increase and lead to the suppression of long-range order. For example, in bosonic gases, Bose–Einstein condensation in one dimension requires stronger confinement than in two dimensions. Here we observe the dimensional crossover from one to two dimensions in a harmonically trapped photon gas and study its properties. The photons are trapped in a dye microcavity where polymer nanostructures provide the trapping potential for the photon gas. By varying the aspect ratio of the harmonic trap, we tune from isotropic two-dimensional confinement to an anisotropic, highly elongated one-dimensional trapping potential. Along this transition, we determine the caloric properties of the photon gas and find a softening of the second-order Bose–Einstein condensation phase transition observed in two dimensions to a crossover behaviour in one dimension. The dimensionality of a many-body system strongly impacts its physical behaviour. Now, a crossover from 1D to 2D has been observed in the Bose–Einstein condensate of a photon gas.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.