{"title":"利用递归神经网络建立行为相关神经动态的分离和优先模型","authors":"Omid G. Sani, Bijan Pesaran, Maryam M. Shanechi","doi":"10.1038/s41593-024-01731-2","DOIUrl":null,"url":null,"abstract":"Understanding the dynamical transformation of neural activity to behavior requires new capabilities to nonlinearly model, dissociate and prioritize behaviorally relevant neural dynamics and test hypotheses about the origin of nonlinearity. We present dissociative prioritized analysis of dynamics (DPAD), a nonlinear dynamical modeling approach that enables these capabilities with a multisection neural network architecture and training approach. Analyzing cortical spiking and local field potential activity across four movement tasks, we demonstrate five use-cases. DPAD enabled more accurate neural–behavioral prediction. It identified nonlinear dynamical transformations of local field potentials that were more behavior predictive than traditional power features. Further, DPAD achieved behavior-predictive nonlinear neural dimensionality reduction. It enabled hypothesis testing regarding nonlinearities in neural–behavioral transformation, revealing that, in our datasets, nonlinearities could largely be isolated to the mapping from latent cortical dynamics to behavior. Finally, DPAD extended across continuous, intermittently sampled and categorical behaviors. DPAD provides a powerful tool for nonlinear dynamical modeling and investigation of neural–behavioral data. The authors present DPAD, a deep learning method, for dynamical neural–behavioral modeling. It dissociates behaviorally relevant neural dynamics, better predicts neural–behavioral data and reveals insight into where their nonlinearities can be isolated.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41593-024-01731-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Dissociative and prioritized modeling of behaviorally relevant neural dynamics using recurrent neural networks\",\"authors\":\"Omid G. Sani, Bijan Pesaran, Maryam M. Shanechi\",\"doi\":\"10.1038/s41593-024-01731-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the dynamical transformation of neural activity to behavior requires new capabilities to nonlinearly model, dissociate and prioritize behaviorally relevant neural dynamics and test hypotheses about the origin of nonlinearity. We present dissociative prioritized analysis of dynamics (DPAD), a nonlinear dynamical modeling approach that enables these capabilities with a multisection neural network architecture and training approach. Analyzing cortical spiking and local field potential activity across four movement tasks, we demonstrate five use-cases. DPAD enabled more accurate neural–behavioral prediction. It identified nonlinear dynamical transformations of local field potentials that were more behavior predictive than traditional power features. Further, DPAD achieved behavior-predictive nonlinear neural dimensionality reduction. It enabled hypothesis testing regarding nonlinearities in neural–behavioral transformation, revealing that, in our datasets, nonlinearities could largely be isolated to the mapping from latent cortical dynamics to behavior. Finally, DPAD extended across continuous, intermittently sampled and categorical behaviors. DPAD provides a powerful tool for nonlinear dynamical modeling and investigation of neural–behavioral data. The authors present DPAD, a deep learning method, for dynamical neural–behavioral modeling. It dissociates behaviorally relevant neural dynamics, better predicts neural–behavioral data and reveals insight into where their nonlinearities can be isolated.\",\"PeriodicalId\":19076,\"journal\":{\"name\":\"Nature neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":21.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41593-024-01731-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41593-024-01731-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-024-01731-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Dissociative and prioritized modeling of behaviorally relevant neural dynamics using recurrent neural networks
Understanding the dynamical transformation of neural activity to behavior requires new capabilities to nonlinearly model, dissociate and prioritize behaviorally relevant neural dynamics and test hypotheses about the origin of nonlinearity. We present dissociative prioritized analysis of dynamics (DPAD), a nonlinear dynamical modeling approach that enables these capabilities with a multisection neural network architecture and training approach. Analyzing cortical spiking and local field potential activity across four movement tasks, we demonstrate five use-cases. DPAD enabled more accurate neural–behavioral prediction. It identified nonlinear dynamical transformations of local field potentials that were more behavior predictive than traditional power features. Further, DPAD achieved behavior-predictive nonlinear neural dimensionality reduction. It enabled hypothesis testing regarding nonlinearities in neural–behavioral transformation, revealing that, in our datasets, nonlinearities could largely be isolated to the mapping from latent cortical dynamics to behavior. Finally, DPAD extended across continuous, intermittently sampled and categorical behaviors. DPAD provides a powerful tool for nonlinear dynamical modeling and investigation of neural–behavioral data. The authors present DPAD, a deep learning method, for dynamical neural–behavioral modeling. It dissociates behaviorally relevant neural dynamics, better predicts neural–behavioral data and reveals insight into where their nonlinearities can be isolated.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.