利用先进计量基础设施数据进行水资源需求管理的动态定价框架

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Water Resources Research Pub Date : 2024-09-05 DOI:10.1029/2023wr035246
Faisal M. Alghamdi, Eric C. Edwards, Emily Z. Berglund
{"title":"利用先进计量基础设施数据进行水资源需求管理的动态定价框架","authors":"Faisal M. Alghamdi, Eric C. Edwards, Emily Z. Berglund","doi":"10.1029/2023wr035246","DOIUrl":null,"url":null,"abstract":"This research investigates dynamic pricing as a demand management tool to reduce cost and increase the lifespan of water distribution systems by reducing peak hour demand. Individual consumer responses to changes in hourly water price are simulated using advanced metering infrastructure (AMI) data. Demand profiles are used as input to a hydraulic simulation model to evaluate the effects of changing demands on flows and in-network metrics. The framework is applied to Lakewood City, California, using a model of the pipe network and AMI data collected at nearly 20,000 accounts. Four dynamic pricing policies are applied to the model to show that reductions in morning peak demand ranging from 6% to 25% reduce peak energy demands up to 14%. These small changes in overall energy demand, up to a 1.7% reduction, lead to relatively larger overall reductions in energy cost, up to 5.5%. The results demonstrate the importance of dynamic pricing as a demand-side strategy for infrastructure management and highlight the potential to accommodate demand growth without additional infrastructure investments.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Pricing Framework for Water Demand Management Using Advanced Metering Infrastructure Data\",\"authors\":\"Faisal M. Alghamdi, Eric C. Edwards, Emily Z. Berglund\",\"doi\":\"10.1029/2023wr035246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates dynamic pricing as a demand management tool to reduce cost and increase the lifespan of water distribution systems by reducing peak hour demand. Individual consumer responses to changes in hourly water price are simulated using advanced metering infrastructure (AMI) data. Demand profiles are used as input to a hydraulic simulation model to evaluate the effects of changing demands on flows and in-network metrics. The framework is applied to Lakewood City, California, using a model of the pipe network and AMI data collected at nearly 20,000 accounts. Four dynamic pricing policies are applied to the model to show that reductions in morning peak demand ranging from 6% to 25% reduce peak energy demands up to 14%. These small changes in overall energy demand, up to a 1.7% reduction, lead to relatively larger overall reductions in energy cost, up to 5.5%. The results demonstrate the importance of dynamic pricing as a demand-side strategy for infrastructure management and highlight the potential to accommodate demand growth without additional infrastructure investments.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr035246\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr035246","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究将动态定价作为一种需求管理工具,通过减少高峰时段的需求来降低成本并延长配水系统的使用寿命。利用先进的计量基础设施(AMI)数据模拟了每个用户对每小时水价变化的反应。需求曲线被用作水力模拟模型的输入,以评估需求变化对流量和网络内指标的影响。该框架应用于加利福尼亚州莱克伍德市,使用了管网模型和在近 20,000 个账户收集的 AMI 数据。该模型采用了四种动态定价政策,结果表明,早上高峰需求量的降低幅度从 6% 到 25%不等,最高可减少 14% 的高峰能源需求。总体能源需求的这些微小变化(最多降低 1.7%)导致能源成本的总体降低幅度相对较大,最高可达 5.5%。这些结果证明了动态定价作为基础设施管理需求方战略的重要性,并突出了在不增加基础设施投资的情况下满足需求增长的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Pricing Framework for Water Demand Management Using Advanced Metering Infrastructure Data
This research investigates dynamic pricing as a demand management tool to reduce cost and increase the lifespan of water distribution systems by reducing peak hour demand. Individual consumer responses to changes in hourly water price are simulated using advanced metering infrastructure (AMI) data. Demand profiles are used as input to a hydraulic simulation model to evaluate the effects of changing demands on flows and in-network metrics. The framework is applied to Lakewood City, California, using a model of the pipe network and AMI data collected at nearly 20,000 accounts. Four dynamic pricing policies are applied to the model to show that reductions in morning peak demand ranging from 6% to 25% reduce peak energy demands up to 14%. These small changes in overall energy demand, up to a 1.7% reduction, lead to relatively larger overall reductions in energy cost, up to 5.5%. The results demonstrate the importance of dynamic pricing as a demand-side strategy for infrastructure management and highlight the potential to accommodate demand growth without additional infrastructure investments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
期刊最新文献
Assessing Groundwater Storage Change in the Great Artesian Basin Using GRACE and Groundwater Budgets A New GRACE Downscaling Approach for Deriving High-Resolution Groundwater Storage Changes Using Ground-Based Scaling Factors The Importance of Impoundment interception in Simulating Riverine Dissolved Organic Carbon Biofilm Growth in Porous Media Well Approximated by Fractal Multirate Mass Transfer With Advective-Diffusive Solute Exchange Spatially Compounding Drought Events in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1