Faisal M. Alghamdi, Eric C. Edwards, Emily Z. Berglund
{"title":"利用先进计量基础设施数据进行水资源需求管理的动态定价框架","authors":"Faisal M. Alghamdi, Eric C. Edwards, Emily Z. Berglund","doi":"10.1029/2023wr035246","DOIUrl":null,"url":null,"abstract":"This research investigates dynamic pricing as a demand management tool to reduce cost and increase the lifespan of water distribution systems by reducing peak hour demand. Individual consumer responses to changes in hourly water price are simulated using advanced metering infrastructure (AMI) data. Demand profiles are used as input to a hydraulic simulation model to evaluate the effects of changing demands on flows and in-network metrics. The framework is applied to Lakewood City, California, using a model of the pipe network and AMI data collected at nearly 20,000 accounts. Four dynamic pricing policies are applied to the model to show that reductions in morning peak demand ranging from 6% to 25% reduce peak energy demands up to 14%. These small changes in overall energy demand, up to a 1.7% reduction, lead to relatively larger overall reductions in energy cost, up to 5.5%. The results demonstrate the importance of dynamic pricing as a demand-side strategy for infrastructure management and highlight the potential to accommodate demand growth without additional infrastructure investments.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Pricing Framework for Water Demand Management Using Advanced Metering Infrastructure Data\",\"authors\":\"Faisal M. Alghamdi, Eric C. Edwards, Emily Z. Berglund\",\"doi\":\"10.1029/2023wr035246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates dynamic pricing as a demand management tool to reduce cost and increase the lifespan of water distribution systems by reducing peak hour demand. Individual consumer responses to changes in hourly water price are simulated using advanced metering infrastructure (AMI) data. Demand profiles are used as input to a hydraulic simulation model to evaluate the effects of changing demands on flows and in-network metrics. The framework is applied to Lakewood City, California, using a model of the pipe network and AMI data collected at nearly 20,000 accounts. Four dynamic pricing policies are applied to the model to show that reductions in morning peak demand ranging from 6% to 25% reduce peak energy demands up to 14%. These small changes in overall energy demand, up to a 1.7% reduction, lead to relatively larger overall reductions in energy cost, up to 5.5%. The results demonstrate the importance of dynamic pricing as a demand-side strategy for infrastructure management and highlight the potential to accommodate demand growth without additional infrastructure investments.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr035246\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr035246","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dynamic Pricing Framework for Water Demand Management Using Advanced Metering Infrastructure Data
This research investigates dynamic pricing as a demand management tool to reduce cost and increase the lifespan of water distribution systems by reducing peak hour demand. Individual consumer responses to changes in hourly water price are simulated using advanced metering infrastructure (AMI) data. Demand profiles are used as input to a hydraulic simulation model to evaluate the effects of changing demands on flows and in-network metrics. The framework is applied to Lakewood City, California, using a model of the pipe network and AMI data collected at nearly 20,000 accounts. Four dynamic pricing policies are applied to the model to show that reductions in morning peak demand ranging from 6% to 25% reduce peak energy demands up to 14%. These small changes in overall energy demand, up to a 1.7% reduction, lead to relatively larger overall reductions in energy cost, up to 5.5%. The results demonstrate the importance of dynamic pricing as a demand-side strategy for infrastructure management and highlight the potential to accommodate demand growth without additional infrastructure investments.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.