混合纽结分子可促进二氧化碳到 l-酪氨酸的转化。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-09-06 DOI:10.1126/sciadv.ado1352
Lei Fan, Zihan Zhu, Siyan Zhao, Smaranika Panda, Yilin Zhao, Jingyi Chen, Lei Chen, Junmei Chen, Jianzhong He, Kang Zhou, Lei Wang
{"title":"混合纽结分子可促进二氧化碳到 l-酪氨酸的转化。","authors":"Lei Fan,&nbsp;Zihan Zhu,&nbsp;Siyan Zhao,&nbsp;Smaranika Panda,&nbsp;Yilin Zhao,&nbsp;Jingyi Chen,&nbsp;Lei Chen,&nbsp;Junmei Chen,&nbsp;Jianzhong He,&nbsp;Kang Zhou,&nbsp;Lei Wang","doi":"10.1126/sciadv.ado1352","DOIUrl":null,"url":null,"abstract":"<div >Using CO<sub>2</sub> as the primary feedstock offers the potential for high-value utilization of CO<sub>2</sub> while forging sustainable pathways for producing valuable natural products, such as <span>l</span>-tyrosine. Cascade catalysis is a promising approach but limited by stringent purity demands of nexus molecules. We developed an abiotic/biotic cascade catalysis using blended nexus molecules for <span>l</span>-tyrosine synthesis. Specifically, we begin by constructing a solid-state reactor to reduce CO<sub>2</sub> electrochemically, yielding a mixture of acetic acid and ethanol, which serves as the blended nexus molecules. Subsequently, we use genetic engineering to introduce an ethanol utilization pathway and a tyrosine producing pathway to <i>Escherichia coli</i> to facilitate <span>l</span>-tyrosine production. The ethanol pathway synergistically cooperated with the acetic acid pathway, boosting <span>l</span>-tyrosine production rate (nearly five times higher compared to the strain without ethanol utilization pathway) and enhancing carbon efficiency. Our findings demonstrate that using blended nexus molecules could potentially offer a more favorable strategy for the cascade catalysis aimed at producing valuable natural products.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado1352","citationCount":"0","resultStr":"{\"title\":\"Blended nexus molecules promote CO2 to l-tyrosine conversion\",\"authors\":\"Lei Fan,&nbsp;Zihan Zhu,&nbsp;Siyan Zhao,&nbsp;Smaranika Panda,&nbsp;Yilin Zhao,&nbsp;Jingyi Chen,&nbsp;Lei Chen,&nbsp;Junmei Chen,&nbsp;Jianzhong He,&nbsp;Kang Zhou,&nbsp;Lei Wang\",\"doi\":\"10.1126/sciadv.ado1352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Using CO<sub>2</sub> as the primary feedstock offers the potential for high-value utilization of CO<sub>2</sub> while forging sustainable pathways for producing valuable natural products, such as <span>l</span>-tyrosine. Cascade catalysis is a promising approach but limited by stringent purity demands of nexus molecules. We developed an abiotic/biotic cascade catalysis using blended nexus molecules for <span>l</span>-tyrosine synthesis. Specifically, we begin by constructing a solid-state reactor to reduce CO<sub>2</sub> electrochemically, yielding a mixture of acetic acid and ethanol, which serves as the blended nexus molecules. Subsequently, we use genetic engineering to introduce an ethanol utilization pathway and a tyrosine producing pathway to <i>Escherichia coli</i> to facilitate <span>l</span>-tyrosine production. The ethanol pathway synergistically cooperated with the acetic acid pathway, boosting <span>l</span>-tyrosine production rate (nearly five times higher compared to the strain without ethanol utilization pathway) and enhancing carbon efficiency. Our findings demonstrate that using blended nexus molecules could potentially offer a more favorable strategy for the cascade catalysis aimed at producing valuable natural products.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ado1352\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ado1352\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado1352","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将二氧化碳作为主要原料,为二氧化碳的高值化利用提供了潜力,同时也为生产有价值的天然产品(如 l-酪氨酸)开辟了可持续的途径。级联催化是一种前景广阔的方法,但受限于对连接分子纯度的严格要求。我们开发了一种非生物/生物级联催化技术,使用混合纽带分子合成 l-酪氨酸。具体来说,我们首先构建了一个固态反应器,用电化学方法还原二氧化碳,生成乙酸和乙醇的混合物,作为混合纽带分子。随后,我们利用基因工程将乙醇利用途径和酪氨酸生产途径引入大肠杆菌,以促进 l-酪氨酸的生产。乙醇途径与乙酸途径协同作用,提高了酪氨酸的生产率(与没有乙醇利用途径的菌株相比提高了近五倍),并提高了碳效率。我们的研究结果表明,使用混合纽带分子有可能为旨在生产有价值天然产品的级联催化提供更有利的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blended nexus molecules promote CO2 to l-tyrosine conversion
Using CO2 as the primary feedstock offers the potential for high-value utilization of CO2 while forging sustainable pathways for producing valuable natural products, such as l-tyrosine. Cascade catalysis is a promising approach but limited by stringent purity demands of nexus molecules. We developed an abiotic/biotic cascade catalysis using blended nexus molecules for l-tyrosine synthesis. Specifically, we begin by constructing a solid-state reactor to reduce CO2 electrochemically, yielding a mixture of acetic acid and ethanol, which serves as the blended nexus molecules. Subsequently, we use genetic engineering to introduce an ethanol utilization pathway and a tyrosine producing pathway to Escherichia coli to facilitate l-tyrosine production. The ethanol pathway synergistically cooperated with the acetic acid pathway, boosting l-tyrosine production rate (nearly five times higher compared to the strain without ethanol utilization pathway) and enhancing carbon efficiency. Our findings demonstrate that using blended nexus molecules could potentially offer a more favorable strategy for the cascade catalysis aimed at producing valuable natural products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Synaptic-like plasticity in 2D nanofluidic memristor from competitive bicationic transport Single-step synthesis of shaped polymeric particles using initiated chemical vapor deposition in liquid crystals Tailored ultrasound propagation in microscale metamaterials via inertia design Physical experiments of waves generated by submerged steam eruptions with applications to volcanic tsunamis Mitochondrial elongation impairs breast cancer metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1