通过分子间硼氮配位提高硼酸酯基玻璃聚合物的机械性能

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-09-04 DOI:10.1016/j.polymer.2024.127587
{"title":"通过分子间硼氮配位提高硼酸酯基玻璃聚合物的机械性能","authors":"","doi":"10.1016/j.polymer.2024.127587","DOIUrl":null,"url":null,"abstract":"<div><p>Malleability and reprocessability of cross-linked polymers can be achieved via exchange reactions of the boronic ester crosslinking. Herein, we report a facile strategy to fabricate and modulate vitrimers by introducing intermolecular boron-nitrogen coordinated boronic ester crosslinking. Using a one-pot reaction, a series of boronic ester vitrimers based on polybutyl acrylate (PBA) was synthesized. The nitrogen containing monomer dimethylaminoethyl methacrylate (DMAEMA) was successfully copolymerized in the backbone to generate intermolecular boron-nitrogen (B–N) coordination. The presence of B–N coordination increases intermolecular interactions, leading to a denser crosslinked network structure and an elevated glass transition temperature. With the formation of B–N coordination, PBA-xB-yN samples at the same crosslinking density exhibit higher elongation at break and tensile strength. These samples dissipate more energy at the same strain and show a more pronounced strain rate dependency, highlighting the sacrificial role of the B–N coordination bonds. Stress relaxation experiments reveal that the intermolecular B–N coordination promotes faster relaxation of PBA-xB-yN compared to PBA-xB due to accelerated exchange dynamics of boronic ester. Mechanical reinforcement after recycling is observed in PBA-1B–2N, indicating that structural optimization of chemical and physical crosslinking occurs during thermal reprocessing. This study will provide a new strategy to fabricate boronic ester based vitrimeric materials with mechanical reinforcement and toughness enhancement.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing mechanical performance of boronic ester based vitrimers via intermolecular boron–nitrogen coordination\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Malleability and reprocessability of cross-linked polymers can be achieved via exchange reactions of the boronic ester crosslinking. Herein, we report a facile strategy to fabricate and modulate vitrimers by introducing intermolecular boron-nitrogen coordinated boronic ester crosslinking. Using a one-pot reaction, a series of boronic ester vitrimers based on polybutyl acrylate (PBA) was synthesized. The nitrogen containing monomer dimethylaminoethyl methacrylate (DMAEMA) was successfully copolymerized in the backbone to generate intermolecular boron-nitrogen (B–N) coordination. The presence of B–N coordination increases intermolecular interactions, leading to a denser crosslinked network structure and an elevated glass transition temperature. With the formation of B–N coordination, PBA-xB-yN samples at the same crosslinking density exhibit higher elongation at break and tensile strength. These samples dissipate more energy at the same strain and show a more pronounced strain rate dependency, highlighting the sacrificial role of the B–N coordination bonds. Stress relaxation experiments reveal that the intermolecular B–N coordination promotes faster relaxation of PBA-xB-yN compared to PBA-xB due to accelerated exchange dynamics of boronic ester. Mechanical reinforcement after recycling is observed in PBA-1B–2N, indicating that structural optimization of chemical and physical crosslinking occurs during thermal reprocessing. This study will provide a new strategy to fabricate boronic ester based vitrimeric materials with mechanical reinforcement and toughness enhancement.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032386124009236\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124009236","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

交联聚合物的延展性和再加工性可通过硼酸酯交联的交换反应来实现。在此,我们报告了一种通过引入分子间硼氮配位硼酸酯交联来制造和调节玻璃体聚合物的简便策略。通过一锅反应,我们合成了一系列基于聚丙烯酸丁酯(PBA)的硼酸酯类玻璃聚合物。含氮单体甲基丙烯酸二甲胺基乙酯(DMAEMA)成功地与骨架共聚,产生分子间硼氮(B-N)配位。B-N 配位的存在增加了分子间的相互作用,导致交联网络结构更加致密,玻璃化转变温度升高。随着 B-N 配位的形成,具有相同交联密度的 PBA-xB-yN 样品表现出更高的断裂伸长率和拉伸强度。这些样品在相同应变下会耗散更多能量,并表现出更明显的应变速率依赖性,突出了 B-N 配位键的牺牲作用。应力松弛实验表明,与 PBA-xB 相比,分子间 B-N 配位由于硼酸酯的交换动力学加速,促进了 PBA-xB-yN 更快的松弛。在 PBA-1B-2N 中观察到回收后的机械增强,这表明在热再加工过程中发生了化学和物理交联的结构优化。这项研究将为制造具有机械强化和韧性增强功能的硼酸酯基三元乙丙橡胶材料提供一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing mechanical performance of boronic ester based vitrimers via intermolecular boron–nitrogen coordination

Malleability and reprocessability of cross-linked polymers can be achieved via exchange reactions of the boronic ester crosslinking. Herein, we report a facile strategy to fabricate and modulate vitrimers by introducing intermolecular boron-nitrogen coordinated boronic ester crosslinking. Using a one-pot reaction, a series of boronic ester vitrimers based on polybutyl acrylate (PBA) was synthesized. The nitrogen containing monomer dimethylaminoethyl methacrylate (DMAEMA) was successfully copolymerized in the backbone to generate intermolecular boron-nitrogen (B–N) coordination. The presence of B–N coordination increases intermolecular interactions, leading to a denser crosslinked network structure and an elevated glass transition temperature. With the formation of B–N coordination, PBA-xB-yN samples at the same crosslinking density exhibit higher elongation at break and tensile strength. These samples dissipate more energy at the same strain and show a more pronounced strain rate dependency, highlighting the sacrificial role of the B–N coordination bonds. Stress relaxation experiments reveal that the intermolecular B–N coordination promotes faster relaxation of PBA-xB-yN compared to PBA-xB due to accelerated exchange dynamics of boronic ester. Mechanical reinforcement after recycling is observed in PBA-1B–2N, indicating that structural optimization of chemical and physical crosslinking occurs during thermal reprocessing. This study will provide a new strategy to fabricate boronic ester based vitrimeric materials with mechanical reinforcement and toughness enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Synergistic integration of plant derived galactomannan and MXene to produce multifunctional nanocomposites with antibacterial and osteogenic properties Ultra-tough, strong and transparent bio-based waterborne polyurethanes with exceptional anti-corrosion properties In-situ fabricated hexagonal PDMS microsphere arrays for substrate-mode light extraction in blue fluorescent organic light emitting diodes Matching Combination of Amorphous Ionic Hydrogel with Elastic Fabric Enables Integrated Properties for Wearable Sensing Effects of crosslinked rubber particles on rheological behaviors of ethylene-propylene-diene rubber/ polypropylene thermoplastic vulcanizates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1