{"title":"Conv-RGNN:用于心电图分类的高效卷积残差图神经网络","authors":"","doi":"10.1016/j.cmpb.2024.108406","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective:</h3><p>Electrocardiogram (ECG) analysis is crucial in diagnosing cardiovascular diseases (CVDs). It is important to consider both temporal and spatial features in ECG analysis to improve automated CVDs diagnosis. Significant progress has been made in automated CVDs diagnosis based on ECG with the continuous development of deep learning. Current most researches often treat 12-lead ECG signals as synchronous sequences in Euclidean space, focusing primarily on extracting temporal features while overlooking the spatial relationships among the 12-lead. However, the spatial distribution of 12-lead ECG electrodes can be more naturally represented using non-Euclidean data structures, which makes the relationships among leads more consistent with their intrinsic characteristics.</p></div><div><h3>Methods:</h3><p>This study proposes an innovative method, Convolutional Residual Graph Neural Network (Conv-RGNN), for ECG classification. The first step is to segment the 12-lead ECG into twelve single-lead ECG, which are then mapped to nodes in a graph that captures the relationships between the different leads through spatial connections, resulting in the 12-lead ECG graph. The graph is then used as input for Conv-RGNN. A convolutional neural network with a position attention mechanism is used to extract temporal sequence information and selectively integrate contextual information to enhance semantic features at different positions. The spatial features of the 12-lead ECG graph are extracted using the residual graph neural network.</p></div><div><h3>Results:</h3><p>The experimental results indicate that Conv-RGNN is highly competitive in two multi-label datasets and one single-label dataset, demonstrating exceptional parameter efficiency, inference speed, model performance, and robustness.</p></div><div><h3>Conclusion:</h3><p>The Conv-RGNN proposed in this paper offer a promising and feasible approach for intelligent diagnosis in resource-constrained environments.</p></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conv-RGNN: An efficient Convolutional Residual Graph Neural Network for ECG classification\",\"authors\":\"\",\"doi\":\"10.1016/j.cmpb.2024.108406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objective:</h3><p>Electrocardiogram (ECG) analysis is crucial in diagnosing cardiovascular diseases (CVDs). It is important to consider both temporal and spatial features in ECG analysis to improve automated CVDs diagnosis. Significant progress has been made in automated CVDs diagnosis based on ECG with the continuous development of deep learning. Current most researches often treat 12-lead ECG signals as synchronous sequences in Euclidean space, focusing primarily on extracting temporal features while overlooking the spatial relationships among the 12-lead. However, the spatial distribution of 12-lead ECG electrodes can be more naturally represented using non-Euclidean data structures, which makes the relationships among leads more consistent with their intrinsic characteristics.</p></div><div><h3>Methods:</h3><p>This study proposes an innovative method, Convolutional Residual Graph Neural Network (Conv-RGNN), for ECG classification. The first step is to segment the 12-lead ECG into twelve single-lead ECG, which are then mapped to nodes in a graph that captures the relationships between the different leads through spatial connections, resulting in the 12-lead ECG graph. The graph is then used as input for Conv-RGNN. A convolutional neural network with a position attention mechanism is used to extract temporal sequence information and selectively integrate contextual information to enhance semantic features at different positions. The spatial features of the 12-lead ECG graph are extracted using the residual graph neural network.</p></div><div><h3>Results:</h3><p>The experimental results indicate that Conv-RGNN is highly competitive in two multi-label datasets and one single-label dataset, demonstrating exceptional parameter efficiency, inference speed, model performance, and robustness.</p></div><div><h3>Conclusion:</h3><p>The Conv-RGNN proposed in this paper offer a promising and feasible approach for intelligent diagnosis in resource-constrained environments.</p></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260724003997\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724003997","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Conv-RGNN: An efficient Convolutional Residual Graph Neural Network for ECG classification
Background and objective:
Electrocardiogram (ECG) analysis is crucial in diagnosing cardiovascular diseases (CVDs). It is important to consider both temporal and spatial features in ECG analysis to improve automated CVDs diagnosis. Significant progress has been made in automated CVDs diagnosis based on ECG with the continuous development of deep learning. Current most researches often treat 12-lead ECG signals as synchronous sequences in Euclidean space, focusing primarily on extracting temporal features while overlooking the spatial relationships among the 12-lead. However, the spatial distribution of 12-lead ECG electrodes can be more naturally represented using non-Euclidean data structures, which makes the relationships among leads more consistent with their intrinsic characteristics.
Methods:
This study proposes an innovative method, Convolutional Residual Graph Neural Network (Conv-RGNN), for ECG classification. The first step is to segment the 12-lead ECG into twelve single-lead ECG, which are then mapped to nodes in a graph that captures the relationships between the different leads through spatial connections, resulting in the 12-lead ECG graph. The graph is then used as input for Conv-RGNN. A convolutional neural network with a position attention mechanism is used to extract temporal sequence information and selectively integrate contextual information to enhance semantic features at different positions. The spatial features of the 12-lead ECG graph are extracted using the residual graph neural network.
Results:
The experimental results indicate that Conv-RGNN is highly competitive in two multi-label datasets and one single-label dataset, demonstrating exceptional parameter efficiency, inference speed, model performance, and robustness.
Conclusion:
The Conv-RGNN proposed in this paper offer a promising and feasible approach for intelligent diagnosis in resource-constrained environments.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.