{"title":"过去三十年长江流域地表水面积的时空变化以水库为主","authors":"","doi":"10.1016/j.ejrh.2024.101948","DOIUrl":null,"url":null,"abstract":"<div><h3>Study area</h3><p>Yangtze River Basin, China.</p></div><div><h3>Study focus</h3><p>The surface water area (SWA) of the Yangtze River Basin (YRB) has changed significantly due to intensified human interferences. But no study investigated the variations in different water types and its drivers yet. To figure out the long-term changes in water bodies and the underlying driving forces, an improved method based on satellite data was developed to accurately delineate the seasonal SWA of the YRB from 1990 to 2020. Changes in different categories (reservoirs, lakes, and rivers) of water bodies are discriminated and attributed to various climatic and anthropogenic factors.</p></div><div><h3>New hydrological insights for the region</h3><p>Trend of the total SWA in the YRB was non-significant, but obvious changes happened at sub-basin scale. The SWA in the source region and upper reaches demonstrated an upward trend, while a decline was observed in the middle and lower reaches. The increase is largely attributed to reservoir changes (70 %). While, the decreases are attributed to changes in lakes (45 %) and rivers (55 %). Attribution analysis reveals that climatic factors primarily drive the SWA changes in the source region (74 %), while human activities play a more substantial role in the upper reaches (64 %). For the middle and lower reaches, climate and human activities have equally influences. This study shed light on the significant impact of human activities on the redistribution of SWA.</p></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214581824002970/pdfft?md5=6081920be8848e220880da8195229808&pid=1-s2.0-S2214581824002970-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reservoir dominated spatio-temporal changes of the surface water area in the Yangtze River Basin during past three decades\",\"authors\":\"\",\"doi\":\"10.1016/j.ejrh.2024.101948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study area</h3><p>Yangtze River Basin, China.</p></div><div><h3>Study focus</h3><p>The surface water area (SWA) of the Yangtze River Basin (YRB) has changed significantly due to intensified human interferences. But no study investigated the variations in different water types and its drivers yet. To figure out the long-term changes in water bodies and the underlying driving forces, an improved method based on satellite data was developed to accurately delineate the seasonal SWA of the YRB from 1990 to 2020. Changes in different categories (reservoirs, lakes, and rivers) of water bodies are discriminated and attributed to various climatic and anthropogenic factors.</p></div><div><h3>New hydrological insights for the region</h3><p>Trend of the total SWA in the YRB was non-significant, but obvious changes happened at sub-basin scale. The SWA in the source region and upper reaches demonstrated an upward trend, while a decline was observed in the middle and lower reaches. The increase is largely attributed to reservoir changes (70 %). While, the decreases are attributed to changes in lakes (45 %) and rivers (55 %). Attribution analysis reveals that climatic factors primarily drive the SWA changes in the source region (74 %), while human activities play a more substantial role in the upper reaches (64 %). For the middle and lower reaches, climate and human activities have equally influences. This study shed light on the significant impact of human activities on the redistribution of SWA.</p></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214581824002970/pdfft?md5=6081920be8848e220880da8195229808&pid=1-s2.0-S2214581824002970-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581824002970\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824002970","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Reservoir dominated spatio-temporal changes of the surface water area in the Yangtze River Basin during past three decades
Study area
Yangtze River Basin, China.
Study focus
The surface water area (SWA) of the Yangtze River Basin (YRB) has changed significantly due to intensified human interferences. But no study investigated the variations in different water types and its drivers yet. To figure out the long-term changes in water bodies and the underlying driving forces, an improved method based on satellite data was developed to accurately delineate the seasonal SWA of the YRB from 1990 to 2020. Changes in different categories (reservoirs, lakes, and rivers) of water bodies are discriminated and attributed to various climatic and anthropogenic factors.
New hydrological insights for the region
Trend of the total SWA in the YRB was non-significant, but obvious changes happened at sub-basin scale. The SWA in the source region and upper reaches demonstrated an upward trend, while a decline was observed in the middle and lower reaches. The increase is largely attributed to reservoir changes (70 %). While, the decreases are attributed to changes in lakes (45 %) and rivers (55 %). Attribution analysis reveals that climatic factors primarily drive the SWA changes in the source region (74 %), while human activities play a more substantial role in the upper reaches (64 %). For the middle and lower reaches, climate and human activities have equally influences. This study shed light on the significant impact of human activities on the redistribution of SWA.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.