William Riedel , Nathan Meezan , Drew Higginson , Matthias Hohenberger , Mark Cappelli
{"title":"倒日冕聚变目标的二维动能离子模拟","authors":"William Riedel , Nathan Meezan , Drew Higginson , Matthias Hohenberger , Mark Cappelli","doi":"10.1016/j.hedp.2024.101146","DOIUrl":null,"url":null,"abstract":"<div><p>Laser-driven “inverted corona” fusion targets have attracted interest as a low-convergence neutron source and platform for studying kinetic physics. The scheme consists of a hollow or gas-filled spherical shell made of deuterated plastic. The shell has one or more laser entrance holes (LEH), resembling a spherical hohlraum. The laser passes through the LEH’s and illuminates the interior surface of the shell, ablating a plasma that travels inward towards the target center. Long ion mean free paths in the converging plasma can lead to significant interpenetration, atomic mix, and other kinetic effects. In this work we report on numerical simulations of inverted corona targets using the kinetic-ion, fluid–electron hybrid particle-in-cell (PIC) approach in 2D RZ geometry. 2D simulations suggest that shape effects do not have a significant impact on plasma evolution and observed yield trends are primarily the result of 1D kinetic mix mechanisms. Simulations are also compared against available experimental data recorded at the OMEGA laser facility. In particular, synthetic x-ray emission images show good qualitative agreement with experimental results, albeit with an apparent timing discrepancy for the two-sided vacuum target. More generally, we demonstrate the potential of hybrid-PIC simulations for full-system modeling and experimental design, including collisional absorption of laser energy, plasma evolution, mix, and fusion burn.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"53 ","pages":"Article 101146"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D kinetic-ion simulations of inverted corona fusion targets\",\"authors\":\"William Riedel , Nathan Meezan , Drew Higginson , Matthias Hohenberger , Mark Cappelli\",\"doi\":\"10.1016/j.hedp.2024.101146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser-driven “inverted corona” fusion targets have attracted interest as a low-convergence neutron source and platform for studying kinetic physics. The scheme consists of a hollow or gas-filled spherical shell made of deuterated plastic. The shell has one or more laser entrance holes (LEH), resembling a spherical hohlraum. The laser passes through the LEH’s and illuminates the interior surface of the shell, ablating a plasma that travels inward towards the target center. Long ion mean free paths in the converging plasma can lead to significant interpenetration, atomic mix, and other kinetic effects. In this work we report on numerical simulations of inverted corona targets using the kinetic-ion, fluid–electron hybrid particle-in-cell (PIC) approach in 2D RZ geometry. 2D simulations suggest that shape effects do not have a significant impact on plasma evolution and observed yield trends are primarily the result of 1D kinetic mix mechanisms. Simulations are also compared against available experimental data recorded at the OMEGA laser facility. In particular, synthetic x-ray emission images show good qualitative agreement with experimental results, albeit with an apparent timing discrepancy for the two-sided vacuum target. More generally, we demonstrate the potential of hybrid-PIC simulations for full-system modeling and experimental design, including collisional absorption of laser energy, plasma evolution, mix, and fusion burn.</p></div>\",\"PeriodicalId\":49267,\"journal\":{\"name\":\"High Energy Density Physics\",\"volume\":\"53 \",\"pages\":\"Article 101146\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Density Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574181824000715\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181824000715","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
2D kinetic-ion simulations of inverted corona fusion targets
Laser-driven “inverted corona” fusion targets have attracted interest as a low-convergence neutron source and platform for studying kinetic physics. The scheme consists of a hollow or gas-filled spherical shell made of deuterated plastic. The shell has one or more laser entrance holes (LEH), resembling a spherical hohlraum. The laser passes through the LEH’s and illuminates the interior surface of the shell, ablating a plasma that travels inward towards the target center. Long ion mean free paths in the converging plasma can lead to significant interpenetration, atomic mix, and other kinetic effects. In this work we report on numerical simulations of inverted corona targets using the kinetic-ion, fluid–electron hybrid particle-in-cell (PIC) approach in 2D RZ geometry. 2D simulations suggest that shape effects do not have a significant impact on plasma evolution and observed yield trends are primarily the result of 1D kinetic mix mechanisms. Simulations are also compared against available experimental data recorded at the OMEGA laser facility. In particular, synthetic x-ray emission images show good qualitative agreement with experimental results, albeit with an apparent timing discrepancy for the two-sided vacuum target. More generally, we demonstrate the potential of hybrid-PIC simulations for full-system modeling and experimental design, including collisional absorption of laser energy, plasma evolution, mix, and fusion burn.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.