{"title":"开发表征细胞外囊泡的补充分析方法","authors":"","doi":"10.1016/j.aca.2024.343171","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Extracellular vesicles (EVs) are involved in intercellular communication and various biological processes. They hold clinical promise for the diagnosis and management of a wide range of pathologies, including cancer, cardiovascular diseases and degenerative diseases, and are of interest as regenerative therapies. Understanding the complex structure of these EVs is essential to perceive the current challenges associated with their analysis and characterization. Today, challenges remain in terms of access to high-yield, high-purity isolation methods, as well as analytical methods for characterizing and controlling the quality of these products for clinical use.</p></div><div><h3>Results</h3><p>We isolated EVs from the same immortalized human cell culture supernatant using two commonly used approaches, namely differential ultracentrifugation and membrane affinity. Then we evaluated EV morphology, size, zeta potential, particle and protein content, as well as protein identity using cryogenic electron microscopy, nanoparticle tracking analysis, asymmetric field flow fractionation (AF4) and size exclusion chromatography (SEC) coupled to multi angle light scattering, bicinchoninic acid assay, electrophoretic light scattering, western blotting and high-resolution mass spectrometry. Compared to membrane affinity isolation, dUC is a more efficient isolation process for obtaining particles with the characteristics expected for EVs and more specifically for exosomes. To validate an isolation process, cryogenic electron microscopy is essential to confirm vesicles with membranes. High resolution mass spectrometry is powerful for understanding the mechanism of action of vesicles. Separative methods, such as AF4 and SEC, are interesting for separating vesicle subpopulations and contaminants.</p></div><div><h3>Significance</h3><p>This study provides a critical assessment of eight different techniques for analyzing EVs, some of which are mandatory for in-depth characterization and deciphering, while others are more appropriate for routine analysis, once the production and isolation process has been validated. The strengths and limitations of the different approaches used are highlighted.</p></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of complementary analytical methods to characterize extracellular vesicles\",\"authors\":\"\",\"doi\":\"10.1016/j.aca.2024.343171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Extracellular vesicles (EVs) are involved in intercellular communication and various biological processes. They hold clinical promise for the diagnosis and management of a wide range of pathologies, including cancer, cardiovascular diseases and degenerative diseases, and are of interest as regenerative therapies. Understanding the complex structure of these EVs is essential to perceive the current challenges associated with their analysis and characterization. Today, challenges remain in terms of access to high-yield, high-purity isolation methods, as well as analytical methods for characterizing and controlling the quality of these products for clinical use.</p></div><div><h3>Results</h3><p>We isolated EVs from the same immortalized human cell culture supernatant using two commonly used approaches, namely differential ultracentrifugation and membrane affinity. Then we evaluated EV morphology, size, zeta potential, particle and protein content, as well as protein identity using cryogenic electron microscopy, nanoparticle tracking analysis, asymmetric field flow fractionation (AF4) and size exclusion chromatography (SEC) coupled to multi angle light scattering, bicinchoninic acid assay, electrophoretic light scattering, western blotting and high-resolution mass spectrometry. Compared to membrane affinity isolation, dUC is a more efficient isolation process for obtaining particles with the characteristics expected for EVs and more specifically for exosomes. To validate an isolation process, cryogenic electron microscopy is essential to confirm vesicles with membranes. High resolution mass spectrometry is powerful for understanding the mechanism of action of vesicles. Separative methods, such as AF4 and SEC, are interesting for separating vesicle subpopulations and contaminants.</p></div><div><h3>Significance</h3><p>This study provides a critical assessment of eight different techniques for analyzing EVs, some of which are mandatory for in-depth characterization and deciphering, while others are more appropriate for routine analysis, once the production and isolation process has been validated. The strengths and limitations of the different approaches used are highlighted.</p></div>\",\"PeriodicalId\":240,\"journal\":{\"name\":\"Analytica Chimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003267024009723\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003267024009723","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Development of complementary analytical methods to characterize extracellular vesicles
Background
Extracellular vesicles (EVs) are involved in intercellular communication and various biological processes. They hold clinical promise for the diagnosis and management of a wide range of pathologies, including cancer, cardiovascular diseases and degenerative diseases, and are of interest as regenerative therapies. Understanding the complex structure of these EVs is essential to perceive the current challenges associated with their analysis and characterization. Today, challenges remain in terms of access to high-yield, high-purity isolation methods, as well as analytical methods for characterizing and controlling the quality of these products for clinical use.
Results
We isolated EVs from the same immortalized human cell culture supernatant using two commonly used approaches, namely differential ultracentrifugation and membrane affinity. Then we evaluated EV morphology, size, zeta potential, particle and protein content, as well as protein identity using cryogenic electron microscopy, nanoparticle tracking analysis, asymmetric field flow fractionation (AF4) and size exclusion chromatography (SEC) coupled to multi angle light scattering, bicinchoninic acid assay, electrophoretic light scattering, western blotting and high-resolution mass spectrometry. Compared to membrane affinity isolation, dUC is a more efficient isolation process for obtaining particles with the characteristics expected for EVs and more specifically for exosomes. To validate an isolation process, cryogenic electron microscopy is essential to confirm vesicles with membranes. High resolution mass spectrometry is powerful for understanding the mechanism of action of vesicles. Separative methods, such as AF4 and SEC, are interesting for separating vesicle subpopulations and contaminants.
Significance
This study provides a critical assessment of eight different techniques for analyzing EVs, some of which are mandatory for in-depth characterization and deciphering, while others are more appropriate for routine analysis, once the production and isolation process has been validated. The strengths and limitations of the different approaches used are highlighted.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.