地球物理破裂连续体模型中出现的断层摩擦和超剪切力

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of The Mechanics and Physics of Solids Pub Date : 2024-08-26 DOI:10.1016/j.jmps.2024.105827
{"title":"地球物理破裂连续体模型中出现的断层摩擦和超剪切力","authors":"","doi":"10.1016/j.jmps.2024.105827","DOIUrl":null,"url":null,"abstract":"<div><p>Important physical observations in rupture dynamics such as static fault friction, short-slip, self-healing, and the supershear phenomenon in cracks are studied. A continuum model of rupture dynamics is developed using the field dislocation mechanics (FDM) theory. The energy density function in our model encodes accepted and simple physical facts related to rocks and granular materials under compression. We work within a 2-dimensional ansatz of FDM where the rupture front is allowed to move only in a horizontal fault layer sandwiched between elastic blocks. Damage via the degradation of elastic modulus is allowed to occur only in the fault layer, characterized by the amount of plastic slip. The theory dictates the evolution equation of the plastic shear strain to be a Hamilton–Jacobi (H-J) equation, resulting in the representation of a propagating rupture front. A Central-Upwind scheme is used to solve the H-J equation. The rupture propagation is fully coupled to elastodynamics in the whole domain, and our simulations recover static friction laws as emergent features of our continuum model, without putting in by hand any such discontinuous criteria in the formulation. Estimates of material parameters of cohesion and friction angle are deduced. Short-slip and slip-weakening (crack-like) behaviors are also reproduced as a function of the degree of damage behind the rupture front. The long-time behavior of a moving rupture front is probed, and it is deduced that equilibrium profiles under no shear stress are not traveling wave profiles under non-zero shear load in our model. However, it is shown that a traveling wave structure is likely attained in the limit of long times. Finally, a crack-like damage front is driven by an initial impact loading, and it is observed in our numerical simulations that an upper bound to the crack speed is the dilatational wave speed of the material unless the material is put under pre-stressed conditions, in which case supersonic motion can be obtained. Without pre-stress, intersonic (supershear) motion is recovered under appropriate conditions.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002250962400293X/pdfft?md5=79aa1d4ec15f281fd10e69ea90daa2fd&pid=1-s2.0-S002250962400293X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Emergent fault friction and supershear in a continuum model of geophysical rupture\",\"authors\":\"\",\"doi\":\"10.1016/j.jmps.2024.105827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Important physical observations in rupture dynamics such as static fault friction, short-slip, self-healing, and the supershear phenomenon in cracks are studied. A continuum model of rupture dynamics is developed using the field dislocation mechanics (FDM) theory. The energy density function in our model encodes accepted and simple physical facts related to rocks and granular materials under compression. We work within a 2-dimensional ansatz of FDM where the rupture front is allowed to move only in a horizontal fault layer sandwiched between elastic blocks. Damage via the degradation of elastic modulus is allowed to occur only in the fault layer, characterized by the amount of plastic slip. The theory dictates the evolution equation of the plastic shear strain to be a Hamilton–Jacobi (H-J) equation, resulting in the representation of a propagating rupture front. A Central-Upwind scheme is used to solve the H-J equation. The rupture propagation is fully coupled to elastodynamics in the whole domain, and our simulations recover static friction laws as emergent features of our continuum model, without putting in by hand any such discontinuous criteria in the formulation. Estimates of material parameters of cohesion and friction angle are deduced. Short-slip and slip-weakening (crack-like) behaviors are also reproduced as a function of the degree of damage behind the rupture front. The long-time behavior of a moving rupture front is probed, and it is deduced that equilibrium profiles under no shear stress are not traveling wave profiles under non-zero shear load in our model. However, it is shown that a traveling wave structure is likely attained in the limit of long times. Finally, a crack-like damage front is driven by an initial impact loading, and it is observed in our numerical simulations that an upper bound to the crack speed is the dilatational wave speed of the material unless the material is put under pre-stressed conditions, in which case supersonic motion can be obtained. Without pre-stress, intersonic (supershear) motion is recovered under appropriate conditions.</p></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S002250962400293X/pdfft?md5=79aa1d4ec15f281fd10e69ea90daa2fd&pid=1-s2.0-S002250962400293X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002250962400293X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002250962400293X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了破裂动力学中的重要物理现象,如静态断层摩擦、短滑、自愈合和裂缝中的超剪切现象。利用场位错力学(FDM)理论建立了破裂动力学连续体模型。我们模型中的能量密度函数包含了与压缩下的岩石和颗粒材料相关的公认的简单物理事实。我们在 FDM 的二维反演中工作,允许破裂前沿仅在夹在弹性块之间的水平断层层中移动。通过弹性模量退化造成的破坏只允许发生在断层层中,以塑性滑移量为特征。该理论决定了塑性剪切应变的演化方程为汉密尔顿-贾可比(H-J)方程,从而表示了一个传播的断裂前沿。采用中央-上风方案求解 H-J 方程。破裂的传播与整个领域的弹性动力学完全耦合,我们的模拟恢复了静摩擦定律,作为连续体模型的新兴特征,而无需在公式中手工加入任何此类不连续的标准。推导出内聚力和摩擦角等材料参数的估计值。短滑动和滑动减弱(类似裂缝)行为也作为破裂前沿后破坏程度的函数再现。研究了移动破裂前沿的长期行为,并推导出在我们的模型中,无剪应力下的平衡剖面不是非零剪载荷下的行波剖面。然而,研究表明,在较长的时间极限下,很可能会出现行波结构。最后,在初始冲击载荷的驱动下,出现了类似裂纹的损伤前沿,我们在数值模拟中观察到,裂纹速度的上限是材料的扩张波速度,除非材料处于预应力条件下,在这种情况下可以获得超音速运动。在没有预应力的情况下,在适当的条件下可以恢复超声速(超剪切)运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergent fault friction and supershear in a continuum model of geophysical rupture

Important physical observations in rupture dynamics such as static fault friction, short-slip, self-healing, and the supershear phenomenon in cracks are studied. A continuum model of rupture dynamics is developed using the field dislocation mechanics (FDM) theory. The energy density function in our model encodes accepted and simple physical facts related to rocks and granular materials under compression. We work within a 2-dimensional ansatz of FDM where the rupture front is allowed to move only in a horizontal fault layer sandwiched between elastic blocks. Damage via the degradation of elastic modulus is allowed to occur only in the fault layer, characterized by the amount of plastic slip. The theory dictates the evolution equation of the plastic shear strain to be a Hamilton–Jacobi (H-J) equation, resulting in the representation of a propagating rupture front. A Central-Upwind scheme is used to solve the H-J equation. The rupture propagation is fully coupled to elastodynamics in the whole domain, and our simulations recover static friction laws as emergent features of our continuum model, without putting in by hand any such discontinuous criteria in the formulation. Estimates of material parameters of cohesion and friction angle are deduced. Short-slip and slip-weakening (crack-like) behaviors are also reproduced as a function of the degree of damage behind the rupture front. The long-time behavior of a moving rupture front is probed, and it is deduced that equilibrium profiles under no shear stress are not traveling wave profiles under non-zero shear load in our model. However, it is shown that a traveling wave structure is likely attained in the limit of long times. Finally, a crack-like damage front is driven by an initial impact loading, and it is observed in our numerical simulations that an upper bound to the crack speed is the dilatational wave speed of the material unless the material is put under pre-stressed conditions, in which case supersonic motion can be obtained. Without pre-stress, intersonic (supershear) motion is recovered under appropriate conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
期刊最新文献
The effect of stress barriers on unconventional-singularity-driven frictional rupture Analysis of shear localization in viscoplastic solids with pressure-sensitive structural transformations An analytic traction-displacement model for a reinforcing ligament bridging a crack at an arbitrary angle, including elastic, frictional, snubbing, yielding, creep, and fatigue phenomena A multiscale Bayesian method to quantify uncertainties in constitutive and microstructural parameters of 3D-printed composites Advanced modeling of higher-order kinematic hardening in strain gradient crystal plasticity based on discrete dislocation dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1