{"title":"二维粒状断层冲沟中的不稳定性:颗粒动力学和应力波动","authors":"Adyota Gupta , K.T. Ramesh , Ryan C. Hurley","doi":"10.1016/j.jmps.2024.105843","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting stress fluctuations in granular media under steady-state shear loading is crucial for applications ranging from geophysical processes to construction engineering. Stress fluctuations emerge from particle rearrangement, usually enabled by frictional slip and force-chain buckling. Existing models used to predict stress fluctuations are largely phenomenological, often accounting for the force chain phenomena implicitly through the introduction of internal variables, or explicitly through assumptions of force chain mechanics. Improper consideration of particle mechanics or mesoscale effects can lead to inaccurate predictions of shear strength and instability, making it difficult to predict the onset of yielding, shear band formation, and other instabilities. Furthermore, while recent advancements in machine learning methods have established links between microscale behavior and macroscopic stress drops in granular fault gouges, their predictive capabilities are limited due to their black-box nature. To gain a deeper understanding of stress fluctuations, and ultimately predict them in a physics-informed manner, it is necessary to examine how system energetics change with stress fluctuations. In this paper, we analyze stress fluctuations in a 2D granular fault gouge loaded under quasistatic, steady-state shear. We track the flow of potential energy between force networks and understand how energy and force networks vary with stress rises and drops. We derive an analytical, dynamic force chain model from first principles to illustrate how interactions between force networks lead to the emergence of localized instability phenomena. Finally, we offer insights into how these localized instabilities ultimately enable shear stress fluctuations at the continuum scale.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105843"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instabilities in a two-dimensional granular fault gouge: Particle dynamics and stress fluctuations\",\"authors\":\"Adyota Gupta , K.T. Ramesh , Ryan C. Hurley\",\"doi\":\"10.1016/j.jmps.2024.105843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Predicting stress fluctuations in granular media under steady-state shear loading is crucial for applications ranging from geophysical processes to construction engineering. Stress fluctuations emerge from particle rearrangement, usually enabled by frictional slip and force-chain buckling. Existing models used to predict stress fluctuations are largely phenomenological, often accounting for the force chain phenomena implicitly through the introduction of internal variables, or explicitly through assumptions of force chain mechanics. Improper consideration of particle mechanics or mesoscale effects can lead to inaccurate predictions of shear strength and instability, making it difficult to predict the onset of yielding, shear band formation, and other instabilities. Furthermore, while recent advancements in machine learning methods have established links between microscale behavior and macroscopic stress drops in granular fault gouges, their predictive capabilities are limited due to their black-box nature. To gain a deeper understanding of stress fluctuations, and ultimately predict them in a physics-informed manner, it is necessary to examine how system energetics change with stress fluctuations. In this paper, we analyze stress fluctuations in a 2D granular fault gouge loaded under quasistatic, steady-state shear. We track the flow of potential energy between force networks and understand how energy and force networks vary with stress rises and drops. We derive an analytical, dynamic force chain model from first principles to illustrate how interactions between force networks lead to the emergence of localized instability phenomena. Finally, we offer insights into how these localized instabilities ultimately enable shear stress fluctuations at the continuum scale.</p></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105843\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003090\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003090","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Instabilities in a two-dimensional granular fault gouge: Particle dynamics and stress fluctuations
Predicting stress fluctuations in granular media under steady-state shear loading is crucial for applications ranging from geophysical processes to construction engineering. Stress fluctuations emerge from particle rearrangement, usually enabled by frictional slip and force-chain buckling. Existing models used to predict stress fluctuations are largely phenomenological, often accounting for the force chain phenomena implicitly through the introduction of internal variables, or explicitly through assumptions of force chain mechanics. Improper consideration of particle mechanics or mesoscale effects can lead to inaccurate predictions of shear strength and instability, making it difficult to predict the onset of yielding, shear band formation, and other instabilities. Furthermore, while recent advancements in machine learning methods have established links between microscale behavior and macroscopic stress drops in granular fault gouges, their predictive capabilities are limited due to their black-box nature. To gain a deeper understanding of stress fluctuations, and ultimately predict them in a physics-informed manner, it is necessary to examine how system energetics change with stress fluctuations. In this paper, we analyze stress fluctuations in a 2D granular fault gouge loaded under quasistatic, steady-state shear. We track the flow of potential energy between force networks and understand how energy and force networks vary with stress rises and drops. We derive an analytical, dynamic force chain model from first principles to illustrate how interactions between force networks lead to the emergence of localized instability phenomena. Finally, we offer insights into how these localized instabilities ultimately enable shear stress fluctuations at the continuum scale.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.