通过使巨噬细胞恢复极性并诱导成纤维细胞样滑膜细胞凋亡来协同治疗类风湿性关节炎的多糖和壳聚糖-银共负载纳米复合物

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-09-01 DOI:10.1016/j.matdes.2024.113287
{"title":"通过使巨噬细胞恢复极性并诱导成纤维细胞样滑膜细胞凋亡来协同治疗类风湿性关节炎的多糖和壳聚糖-银共负载纳米复合物","authors":"","doi":"10.1016/j.matdes.2024.113287","DOIUrl":null,"url":null,"abstract":"<div><p>Rheumatoid arthritis (RA) is a chronic and refractory autoimmune disease that primarily affects the synovium of diarthrodial joints. Inflammatory macrophages and fibroblast-like synoviocytes (FLS) in the synovial microenvironment produce pathogenic mediators such as cytokines and proteases that perpetuate immune-mediated inflammation and contribute to the destruction of cartilage and bone. Polydatin (PD), a natural active compound, has demonstrated potential anti-inflammatory and anti-arthritic effects. However, drug development and delivery of PD is still a great challenge owing to its low solubility, short half-life, and high dose requirement. In order to overcome these drawbacks, we developed a novel nanodrug system named HA-M@PB@Ag@PD NPs. This system is composed of hybrid membrane (M), hyaluronic acid (HA), Prussian blue nanoparticles (PB NPs), PD, and chitosan-silver (Chi-Ag). <em>In vitro</em> experiments demonstrated that HA-M@PB@Ag@PD NPs effectively cleared ROS, promoted the repolarization of inflammatory macrophages, and induced apoptosis of RA-FLS. Using a rat model of RA, HA-M@PB@Ag@PD NPs markedly suppressed joint inflammation, inhibited synovial hyperplasia, and protected joints against destruction of cartilage and bone. Moreover, HA-M@PB@Ag@PD NPs significantly improved the synovial microenvironment of arthritic rats by reducing the number of RA-FLS and inflammatory macrophages, and facilitating the repolarization of inflammatory macrophages.</p></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0264127524006622/pdfft?md5=0c3a02d419eb169f07b53781018fa81e&pid=1-s2.0-S0264127524006622-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Polydatin and chitosan-silver co-loaded nanocomplexes for synergistic treatment of rheumatoid arthritis via repolarizing macrophages and inducing apoptosis of fibroblast-like synoviocytes\",\"authors\":\"\",\"doi\":\"10.1016/j.matdes.2024.113287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rheumatoid arthritis (RA) is a chronic and refractory autoimmune disease that primarily affects the synovium of diarthrodial joints. Inflammatory macrophages and fibroblast-like synoviocytes (FLS) in the synovial microenvironment produce pathogenic mediators such as cytokines and proteases that perpetuate immune-mediated inflammation and contribute to the destruction of cartilage and bone. Polydatin (PD), a natural active compound, has demonstrated potential anti-inflammatory and anti-arthritic effects. However, drug development and delivery of PD is still a great challenge owing to its low solubility, short half-life, and high dose requirement. In order to overcome these drawbacks, we developed a novel nanodrug system named HA-M@PB@Ag@PD NPs. This system is composed of hybrid membrane (M), hyaluronic acid (HA), Prussian blue nanoparticles (PB NPs), PD, and chitosan-silver (Chi-Ag). <em>In vitro</em> experiments demonstrated that HA-M@PB@Ag@PD NPs effectively cleared ROS, promoted the repolarization of inflammatory macrophages, and induced apoptosis of RA-FLS. Using a rat model of RA, HA-M@PB@Ag@PD NPs markedly suppressed joint inflammation, inhibited synovial hyperplasia, and protected joints against destruction of cartilage and bone. Moreover, HA-M@PB@Ag@PD NPs significantly improved the synovial microenvironment of arthritic rats by reducing the number of RA-FLS and inflammatory macrophages, and facilitating the repolarization of inflammatory macrophages.</p></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0264127524006622/pdfft?md5=0c3a02d419eb169f07b53781018fa81e&pid=1-s2.0-S0264127524006622-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524006622\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524006622","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

类风湿性关节炎(RA)是一种慢性难治性自身免疫性疾病,主要影响二关节滑膜。滑膜微环境中的炎性巨噬细胞和纤维母细胞样滑膜细胞(FLS)会产生细胞因子和蛋白酶等致病介质,使免疫介导的炎症持续存在,并导致软骨和骨骼的破坏。多糖(PD)是一种天然活性化合物,具有潜在的抗炎和抗关节炎作用。然而,由于其溶解度低、半衰期短、剂量要求高等原因,PD 的药物开发和给药仍然是一个巨大的挑战。为了克服这些缺点,我们开发了一种新型纳米药物系统,名为 HA-M@PB@Ag@PD NPs。该系统由混合膜(M)、透明质酸(HA)、普鲁士蓝纳米颗粒(PB NPs)、PD 和壳聚糖银(Chi-Ag)组成。体外实验表明,HA-M@PB@Ag@PD NPs 能有效清除 ROS,促进炎性巨噬细胞的再极化,并诱导 RA-FLS 细胞凋亡。利用大鼠的 RA 模型,HA-M@PB@Ag@PD NPs 能显著抑制关节炎症,抑制滑膜增生,保护关节免受软骨和骨骼的破坏。此外,HA-M@PB@Ag@PD NPs 还能减少 RA-FLS 和炎性巨噬细胞的数量,促进炎性巨噬细胞的再极化,从而显著改善关节炎大鼠的滑膜微环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polydatin and chitosan-silver co-loaded nanocomplexes for synergistic treatment of rheumatoid arthritis via repolarizing macrophages and inducing apoptosis of fibroblast-like synoviocytes

Rheumatoid arthritis (RA) is a chronic and refractory autoimmune disease that primarily affects the synovium of diarthrodial joints. Inflammatory macrophages and fibroblast-like synoviocytes (FLS) in the synovial microenvironment produce pathogenic mediators such as cytokines and proteases that perpetuate immune-mediated inflammation and contribute to the destruction of cartilage and bone. Polydatin (PD), a natural active compound, has demonstrated potential anti-inflammatory and anti-arthritic effects. However, drug development and delivery of PD is still a great challenge owing to its low solubility, short half-life, and high dose requirement. In order to overcome these drawbacks, we developed a novel nanodrug system named HA-M@PB@Ag@PD NPs. This system is composed of hybrid membrane (M), hyaluronic acid (HA), Prussian blue nanoparticles (PB NPs), PD, and chitosan-silver (Chi-Ag). In vitro experiments demonstrated that HA-M@PB@Ag@PD NPs effectively cleared ROS, promoted the repolarization of inflammatory macrophages, and induced apoptosis of RA-FLS. Using a rat model of RA, HA-M@PB@Ag@PD NPs markedly suppressed joint inflammation, inhibited synovial hyperplasia, and protected joints against destruction of cartilage and bone. Moreover, HA-M@PB@Ag@PD NPs significantly improved the synovial microenvironment of arthritic rats by reducing the number of RA-FLS and inflammatory macrophages, and facilitating the repolarization of inflammatory macrophages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Investigation of printing turn angle effects on structural deformation and stress in selective laser melting Inverse-designed 3D sequential metamaterials achieving extreme stiffness Multi-scale ceramic TiC solves the strength-plasticity equilibrium problem of high entropy alloy Comment on Hajra et al.: “High-temperature phase stability and phase transformations of Niobium-Chromium Laves phase: Experimental and first-principles calculation” Microneedles integrated with crystallinity control for poorly water-soluble drugs: Enhanced bioavailability and innovative controlled release system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1