吸附增强型乙醇蒸汽转化与原位二氧化碳捕获和转化相结合

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2024-08-30 DOI:10.1016/j.joei.2024.101808
{"title":"吸附增强型乙醇蒸汽转化与原位二氧化碳捕获和转化相结合","authors":"","doi":"10.1016/j.joei.2024.101808","DOIUrl":null,"url":null,"abstract":"<div><p>The impacts of climate change and the issue of greenhouse gas emissions have sparked research into renewable energy alternatives to fossil fuels. Hydrogen has gained attention as a clean, renewable and environmentally friendly energy source. Enhanced-ethanol steam reforming has been proposed as a promising method for blue hydrogen production, addressing greenhouse gas emission issues. The use of catalysts enhances the adsorption of ethanol and water molecules on the surface, promoting the reaction rate. This study systematically explored the effects of different Fe loading and CaO addition ratios on the ethanol steam reforming and CO<sub>2</sub> conversion processes to optimize catalyst performance. The experimental results showed that Fe/SiC catalysts effectively promoted the conversion of ethanol and generated high-purity hydrogen, exhibiting excellent catalytic activity. Specifically, a catalyst with 10 % Fe loading and mixed with 0.3g CaO significantly increased the hydrogen yield to 64.4 mmol/g, which was 2.88 times higher than that without the catalyst.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sorption-enhanced ethanol steam reforming coupled with in-situ CO2 capture and conversion\",\"authors\":\"\",\"doi\":\"10.1016/j.joei.2024.101808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The impacts of climate change and the issue of greenhouse gas emissions have sparked research into renewable energy alternatives to fossil fuels. Hydrogen has gained attention as a clean, renewable and environmentally friendly energy source. Enhanced-ethanol steam reforming has been proposed as a promising method for blue hydrogen production, addressing greenhouse gas emission issues. The use of catalysts enhances the adsorption of ethanol and water molecules on the surface, promoting the reaction rate. This study systematically explored the effects of different Fe loading and CaO addition ratios on the ethanol steam reforming and CO<sub>2</sub> conversion processes to optimize catalyst performance. The experimental results showed that Fe/SiC catalysts effectively promoted the conversion of ethanol and generated high-purity hydrogen, exhibiting excellent catalytic activity. Specifically, a catalyst with 10 % Fe loading and mixed with 0.3g CaO significantly increased the hydrogen yield to 64.4 mmol/g, which was 2.88 times higher than that without the catalyst.</p></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124002861\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002861","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

气候变化的影响和温室气体排放问题引发了对化石燃料的可再生能源替代品的研究。氢气作为一种清洁、可再生和环保的能源受到了关注。有人提出,强化乙醇蒸汽转化是一种很有前途的蓝色制氢方法,可以解决温室气体排放问题。催化剂的使用可增强乙醇和水分子在催化剂表面的吸附,从而提高反应速率。本研究系统地探讨了不同 Fe 负载和 CaO 添加比对乙醇蒸汽转化和 CO2 转化过程的影响,以优化催化剂性能。实验结果表明,Fe/SiC 催化剂能有效促进乙醇转化并产生高纯度氢气,表现出优异的催化活性。具体而言,铁含量为 10% 并与 0.3g CaO 混合的催化剂可显著提高氢气产量,使其达到 64.4 mmol/g,是未添加催化剂时的 2.88 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sorption-enhanced ethanol steam reforming coupled with in-situ CO2 capture and conversion

The impacts of climate change and the issue of greenhouse gas emissions have sparked research into renewable energy alternatives to fossil fuels. Hydrogen has gained attention as a clean, renewable and environmentally friendly energy source. Enhanced-ethanol steam reforming has been proposed as a promising method for blue hydrogen production, addressing greenhouse gas emission issues. The use of catalysts enhances the adsorption of ethanol and water molecules on the surface, promoting the reaction rate. This study systematically explored the effects of different Fe loading and CaO addition ratios on the ethanol steam reforming and CO2 conversion processes to optimize catalyst performance. The experimental results showed that Fe/SiC catalysts effectively promoted the conversion of ethanol and generated high-purity hydrogen, exhibiting excellent catalytic activity. Specifically, a catalyst with 10 % Fe loading and mixed with 0.3g CaO significantly increased the hydrogen yield to 64.4 mmol/g, which was 2.88 times higher than that without the catalyst.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Boosting light olefin production from pyrolysis of low-density polyethylene: A two-stage catalytic process The effects of NH3 pre-cracking and initial temperature on the intrinsic instability and NOx emissions of NH3/bio-syngas/air premixed flames Experimental study of ammonia energy ratio on combustion and emissions from ammonia-gasoline dual-fuel engine at various load conditions Effects of thermophysical properties on heterogeneous reaction dynamics of methane/oxygen mixtures in a micro catalytic combustion chamber Thermodynamic and molecular dynamics study of methane dry reforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1