Xinjuan Li, Yan Liu, Ao Li, Xuening Ma, Xianbin Jia, Yahao Dong
{"title":"用于高效二氧化碳吸附、分离和转化的稳定分层离子液体纳米通道","authors":"Xinjuan Li, Yan Liu, Ao Li, Xuening Ma, Xianbin Jia, Yahao Dong","doi":"10.1016/j.jcou.2024.102923","DOIUrl":null,"url":null,"abstract":"<div><p>Constructing stable nanochannels and nanoconfined environments for ionic liquids holds significant application value in gas separation, ion channels, and related fields. The functional polyionic liquid synthesized in this study exhibits a controllable assembly structure and demonstrates liquid crystal properties. Through heating and water treatment, the polyionic liquids crosslink to form multi-hierarchical nanopores, including sub-nanochannels with pore sizes similar to CO<sub>2</sub>, without the need for a catalyst. The specific surface area and pore size of the polyionic liquid network (PILC) were adjusted by regulating the self-assembly of polyionic liquids in water. The unique PILC, combining ionic liquid nanopores and liquid crystal structure properties, shows high CO<sub>2</sub> adsorption performance and excellent CO<sub>2</sub>/N<sub>2</sub> selectivities, surpassing commonly reported ionic liquid porous materials. Furthermore, PILC-2 exhibits good catalytic performance for CO<sub>2</sub> cycloaddition, and its catalytic activity and selectivity did not significantly decrease after five cycles. This study successfully introduces hierarchical ionic liquid nanochannels into porous networks without involving any inorganic ordered nanomaterials. This provides a simple and effective approach for the highly selective adsorption and separation of CO<sub>2</sub>, as well as for the preparation of catalytic materials.</p></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"87 ","pages":"Article 102923"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212982024002580/pdfft?md5=231e5c87e2f3c309c4412cb7730e358e&pid=1-s2.0-S2212982024002580-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stable hierarchical ionic liquid nanochannels for highly efficient CO2 adsorption, separation and conversion\",\"authors\":\"Xinjuan Li, Yan Liu, Ao Li, Xuening Ma, Xianbin Jia, Yahao Dong\",\"doi\":\"10.1016/j.jcou.2024.102923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Constructing stable nanochannels and nanoconfined environments for ionic liquids holds significant application value in gas separation, ion channels, and related fields. The functional polyionic liquid synthesized in this study exhibits a controllable assembly structure and demonstrates liquid crystal properties. Through heating and water treatment, the polyionic liquids crosslink to form multi-hierarchical nanopores, including sub-nanochannels with pore sizes similar to CO<sub>2</sub>, without the need for a catalyst. The specific surface area and pore size of the polyionic liquid network (PILC) were adjusted by regulating the self-assembly of polyionic liquids in water. The unique PILC, combining ionic liquid nanopores and liquid crystal structure properties, shows high CO<sub>2</sub> adsorption performance and excellent CO<sub>2</sub>/N<sub>2</sub> selectivities, surpassing commonly reported ionic liquid porous materials. Furthermore, PILC-2 exhibits good catalytic performance for CO<sub>2</sub> cycloaddition, and its catalytic activity and selectivity did not significantly decrease after five cycles. This study successfully introduces hierarchical ionic liquid nanochannels into porous networks without involving any inorganic ordered nanomaterials. This provides a simple and effective approach for the highly selective adsorption and separation of CO<sub>2</sub>, as well as for the preparation of catalytic materials.</p></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":\"87 \",\"pages\":\"Article 102923\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212982024002580/pdfft?md5=231e5c87e2f3c309c4412cb7730e358e&pid=1-s2.0-S2212982024002580-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024002580\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024002580","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为离子液体构建稳定的纳米通道和纳米限制环境在气体分离、离子通道及相关领域具有重要的应用价值。本研究合成的功能性多离子液体具有可控的组装结构,并显示出液晶特性。通过加热和水处理,聚阴离子液体无需催化剂即可交联形成多层次纳米孔,包括孔径与二氧化碳相似的亚纳米通道。通过调节聚阴离子液体在水中的自组装,可以调整聚阴离子液体网络(PILC)的比表面积和孔径。这种独特的 PILC 结合了离子液体纳米孔和液晶结构的特性,具有很高的二氧化碳吸附性能和优异的 CO2/N2 选择性,超过了常见的离子液体多孔材料。此外,PILC-2 对 CO2 环加成具有良好的催化性能,其催化活性和选择性在五个循环后没有明显下降。这项研究在不涉及任何无机有序纳米材料的情况下,成功地将分层离子液体纳米通道引入多孔网络。这为高选择性吸附和分离二氧化碳以及制备催化材料提供了一种简单有效的方法。
Stable hierarchical ionic liquid nanochannels for highly efficient CO2 adsorption, separation and conversion
Constructing stable nanochannels and nanoconfined environments for ionic liquids holds significant application value in gas separation, ion channels, and related fields. The functional polyionic liquid synthesized in this study exhibits a controllable assembly structure and demonstrates liquid crystal properties. Through heating and water treatment, the polyionic liquids crosslink to form multi-hierarchical nanopores, including sub-nanochannels with pore sizes similar to CO2, without the need for a catalyst. The specific surface area and pore size of the polyionic liquid network (PILC) were adjusted by regulating the self-assembly of polyionic liquids in water. The unique PILC, combining ionic liquid nanopores and liquid crystal structure properties, shows high CO2 adsorption performance and excellent CO2/N2 selectivities, surpassing commonly reported ionic liquid porous materials. Furthermore, PILC-2 exhibits good catalytic performance for CO2 cycloaddition, and its catalytic activity and selectivity did not significantly decrease after five cycles. This study successfully introduces hierarchical ionic liquid nanochannels into porous networks without involving any inorganic ordered nanomaterials. This provides a simple and effective approach for the highly selective adsorption and separation of CO2, as well as for the preparation of catalytic materials.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.