{"title":"带隔热涂层涡轮叶片的薄膜冷却和流动阻力特性分析","authors":"","doi":"10.1016/j.surfcoat.2024.131297","DOIUrl":null,"url":null,"abstract":"<div><p>This paper employs numerical simulation to investigate the influence of thermal barrier coatings' (TBCs) thickness and surface roughness on the cooling and flow resistance characteristics of turbine blades. The results indicate that the application of TBCs significantly enhances the surface cooling efficiency of the blades. Turbine blades coated with a 0.4 mm thickness of TBC compared to blades without thermal barrier coatings, the average cooling efficiency of the blade surface increases by 12.3 %, and the maximum temperature drop at the leading edge(LE) is 317.8 K. However, the small increment in TBCs thickness leads to an increase in aerodynamic losses in the vane passage. The static pressure coefficient continuously decreases in the suction side(SS) within the interval 0.3 < <em>x/C</em> < 1.0. The average flow coefficient of the film holes exhibits distinct variations in different regions of the blade. As surface roughness increases, the cooling efficiency on the SS and pressure side(PS) of the blade decreases, while the heat transfer enhancement at the LE and cooling efficiency improve. Compared to a smooth coated surface, when the surface roughness height increases to 20 μm, the blade surface cooling efficiency decreases by 1.12 %, and the average temperature rise is 10.3 K. Simultaneously, the energy loss coefficient and total pressure loss coefficient in the vane passage rise with the increase in surface roughness, while the variation in the average flow coefficient of the film cooling holes remains relatively small.</p></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of film cooling and flow resistance characteristics of turbine blades with thermal barrier coatings\",\"authors\":\"\",\"doi\":\"10.1016/j.surfcoat.2024.131297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper employs numerical simulation to investigate the influence of thermal barrier coatings' (TBCs) thickness and surface roughness on the cooling and flow resistance characteristics of turbine blades. The results indicate that the application of TBCs significantly enhances the surface cooling efficiency of the blades. Turbine blades coated with a 0.4 mm thickness of TBC compared to blades without thermal barrier coatings, the average cooling efficiency of the blade surface increases by 12.3 %, and the maximum temperature drop at the leading edge(LE) is 317.8 K. However, the small increment in TBCs thickness leads to an increase in aerodynamic losses in the vane passage. The static pressure coefficient continuously decreases in the suction side(SS) within the interval 0.3 < <em>x/C</em> < 1.0. The average flow coefficient of the film holes exhibits distinct variations in different regions of the blade. As surface roughness increases, the cooling efficiency on the SS and pressure side(PS) of the blade decreases, while the heat transfer enhancement at the LE and cooling efficiency improve. Compared to a smooth coated surface, when the surface roughness height increases to 20 μm, the blade surface cooling efficiency decreases by 1.12 %, and the average temperature rise is 10.3 K. Simultaneously, the energy loss coefficient and total pressure loss coefficient in the vane passage rise with the increase in surface roughness, while the variation in the average flow coefficient of the film cooling holes remains relatively small.</p></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224009289\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224009289","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Analysis of film cooling and flow resistance characteristics of turbine blades with thermal barrier coatings
This paper employs numerical simulation to investigate the influence of thermal barrier coatings' (TBCs) thickness and surface roughness on the cooling and flow resistance characteristics of turbine blades. The results indicate that the application of TBCs significantly enhances the surface cooling efficiency of the blades. Turbine blades coated with a 0.4 mm thickness of TBC compared to blades without thermal barrier coatings, the average cooling efficiency of the blade surface increases by 12.3 %, and the maximum temperature drop at the leading edge(LE) is 317.8 K. However, the small increment in TBCs thickness leads to an increase in aerodynamic losses in the vane passage. The static pressure coefficient continuously decreases in the suction side(SS) within the interval 0.3 < x/C < 1.0. The average flow coefficient of the film holes exhibits distinct variations in different regions of the blade. As surface roughness increases, the cooling efficiency on the SS and pressure side(PS) of the blade decreases, while the heat transfer enhancement at the LE and cooling efficiency improve. Compared to a smooth coated surface, when the surface roughness height increases to 20 μm, the blade surface cooling efficiency decreases by 1.12 %, and the average temperature rise is 10.3 K. Simultaneously, the energy loss coefficient and total pressure loss coefficient in the vane passage rise with the increase in surface roughness, while the variation in the average flow coefficient of the film cooling holes remains relatively small.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.