Carlos Eduardo Veloz Marmolejo, Davood B. Pourkargar
{"title":"多晶硅反应器系统的预测建模和稳健非线性控制,促进太阳能电池生产","authors":"Carlos Eduardo Veloz Marmolejo, Davood B. Pourkargar","doi":"10.1016/j.conengprac.2024.106065","DOIUrl":null,"url":null,"abstract":"<div><p>Solar-grade silicon production is a critical component in the solar energy sector, with fluidized-bed reactors (FBRs) emerging as a promising alternative offering superior energy efficiency and operational advantages over conventional technologies. However, the operational complexity of FBR systems poses significant challenges to effectively controlling their operation at optimal conditions. This study introduces a predictive modeling framework for silicon production in fluidized bed reactors to characterize both the particle size distribution of the product and powder loss. Two different flow regime modeling approaches are explored to describe the silane pyrolysis reaction and illustrate how the deposition rate affects particle growth and powder loss. A discrete population balance equation is employed to estimate the particle size distribution as a function of the deposition rate. Subsequently, a robust nonlinear model predictive control (RNMPC) approach is utilized to regulate the system at the desired operating conditions, stabilize the product particle size distribution, and minimize powder loss. Detailed open-loop and closed-loop simulation studies demonstrate the successful integration of RNMPC and the proposed predictive modeling approach.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"153 ","pages":"Article 106065"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive modeling and robust nonlinear control of a polysilicon reactor system for enhanced solar cell production\",\"authors\":\"Carlos Eduardo Veloz Marmolejo, Davood B. Pourkargar\",\"doi\":\"10.1016/j.conengprac.2024.106065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar-grade silicon production is a critical component in the solar energy sector, with fluidized-bed reactors (FBRs) emerging as a promising alternative offering superior energy efficiency and operational advantages over conventional technologies. However, the operational complexity of FBR systems poses significant challenges to effectively controlling their operation at optimal conditions. This study introduces a predictive modeling framework for silicon production in fluidized bed reactors to characterize both the particle size distribution of the product and powder loss. Two different flow regime modeling approaches are explored to describe the silane pyrolysis reaction and illustrate how the deposition rate affects particle growth and powder loss. A discrete population balance equation is employed to estimate the particle size distribution as a function of the deposition rate. Subsequently, a robust nonlinear model predictive control (RNMPC) approach is utilized to regulate the system at the desired operating conditions, stabilize the product particle size distribution, and minimize powder loss. Detailed open-loop and closed-loop simulation studies demonstrate the successful integration of RNMPC and the proposed predictive modeling approach.</p></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"153 \",\"pages\":\"Article 106065\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002247\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002247","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Predictive modeling and robust nonlinear control of a polysilicon reactor system for enhanced solar cell production
Solar-grade silicon production is a critical component in the solar energy sector, with fluidized-bed reactors (FBRs) emerging as a promising alternative offering superior energy efficiency and operational advantages over conventional technologies. However, the operational complexity of FBR systems poses significant challenges to effectively controlling their operation at optimal conditions. This study introduces a predictive modeling framework for silicon production in fluidized bed reactors to characterize both the particle size distribution of the product and powder loss. Two different flow regime modeling approaches are explored to describe the silane pyrolysis reaction and illustrate how the deposition rate affects particle growth and powder loss. A discrete population balance equation is employed to estimate the particle size distribution as a function of the deposition rate. Subsequently, a robust nonlinear model predictive control (RNMPC) approach is utilized to regulate the system at the desired operating conditions, stabilize the product particle size distribution, and minimize powder loss. Detailed open-loop and closed-loop simulation studies demonstrate the successful integration of RNMPC and the proposed predictive modeling approach.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.