通过抑制相互扩散实现高导电性 Ag/Ti3AlC2 复合材料

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2024-09-05 DOI:10.1016/j.scriptamat.2024.116343
Chengzhe Wu , Xuelian Wu , Jianxiang Ding , Kuankuan Ding , Peigen Zhang , Chengjian Ma , Demin Hu , Dongming Liu , Shihong Zhang , Wei Zheng , Long Pan , ZhengMing Sun
{"title":"通过抑制相互扩散实现高导电性 Ag/Ti3AlC2 复合材料","authors":"Chengzhe Wu ,&nbsp;Xuelian Wu ,&nbsp;Jianxiang Ding ,&nbsp;Kuankuan Ding ,&nbsp;Peigen Zhang ,&nbsp;Chengjian Ma ,&nbsp;Demin Hu ,&nbsp;Dongming Liu ,&nbsp;Shihong Zhang ,&nbsp;Wei Zheng ,&nbsp;Long Pan ,&nbsp;ZhengMing Sun","doi":"10.1016/j.scriptamat.2024.116343","DOIUrl":null,"url":null,"abstract":"<div><p>Interfacial behavior in composites significantly influences their properties. Ag-based composites reinforced with Ti<sub>3</sub>AlC<sub>2</sub> (a MAX phase) are promising for electrical contacts. However, interdiffusion between the Ag matrix and Ti<sub>3</sub>AlC<sub>2</sub> increases impurities in the Ag matrix, adversely affecting electrical resistance and raising operational temperatures. To address this, we developed a novel partial etching pretreatment that selectively etches Al atoms from the near-surface region of Ti<sub>3</sub>AlC<sub>2</sub>, creating a Ti<sub>3</sub>C<sub>2</sub> surface layer. This innovative approach confines interdiffusion mainly within the Ti<sub>3</sub>C<sub>2</sub> layer, preserving the Ag matrix's high electrical conductivity. Experimental results for Ag-based composites with 10 wt.% of Ti<sub>3</sub>AlC<sub>2</sub>, subjected to 0.5 h etching, show a significant 51 % reduction in electrical resistivity with only a 10 % decrease in mechanical properties compared to Ag/Ti<sub>3</sub>AlC<sub>2</sub>. These findings underscore the effectiveness of manipulating A-site elements in Ti<sub>3</sub>AlC<sub>2</sub> to enhance the performance of Ag-based composites, offering valuable insights for advanced electrical material design.</p></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"255 ","pages":"Article 116343"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving highly conductive Ag/Ti3AlC2 composite by inhibiting interdiffusion\",\"authors\":\"Chengzhe Wu ,&nbsp;Xuelian Wu ,&nbsp;Jianxiang Ding ,&nbsp;Kuankuan Ding ,&nbsp;Peigen Zhang ,&nbsp;Chengjian Ma ,&nbsp;Demin Hu ,&nbsp;Dongming Liu ,&nbsp;Shihong Zhang ,&nbsp;Wei Zheng ,&nbsp;Long Pan ,&nbsp;ZhengMing Sun\",\"doi\":\"10.1016/j.scriptamat.2024.116343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interfacial behavior in composites significantly influences their properties. Ag-based composites reinforced with Ti<sub>3</sub>AlC<sub>2</sub> (a MAX phase) are promising for electrical contacts. However, interdiffusion between the Ag matrix and Ti<sub>3</sub>AlC<sub>2</sub> increases impurities in the Ag matrix, adversely affecting electrical resistance and raising operational temperatures. To address this, we developed a novel partial etching pretreatment that selectively etches Al atoms from the near-surface region of Ti<sub>3</sub>AlC<sub>2</sub>, creating a Ti<sub>3</sub>C<sub>2</sub> surface layer. This innovative approach confines interdiffusion mainly within the Ti<sub>3</sub>C<sub>2</sub> layer, preserving the Ag matrix's high electrical conductivity. Experimental results for Ag-based composites with 10 wt.% of Ti<sub>3</sub>AlC<sub>2</sub>, subjected to 0.5 h etching, show a significant 51 % reduction in electrical resistivity with only a 10 % decrease in mechanical properties compared to Ag/Ti<sub>3</sub>AlC<sub>2</sub>. These findings underscore the effectiveness of manipulating A-site elements in Ti<sub>3</sub>AlC<sub>2</sub> to enhance the performance of Ag-based composites, offering valuable insights for advanced electrical material design.</p></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"255 \",\"pages\":\"Article 116343\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646224003774\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224003774","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

复合材料中的界面行为会对其性能产生重大影响。用 Ti3AlC2(一种 MAX 相)增强的银基复合材料有望用于电接触。然而,银基体和 Ti3AlC2 之间的相互扩散会增加银基体中的杂质,从而对电阻产生不利影响并提高工作温度。为解决这一问题,我们开发了一种新颖的部分蚀刻预处理方法,可选择性地蚀刻 Ti3AlC2 近表面区域的铝原子,形成 Ti3C2 表面层。这种创新方法主要将相互扩散限制在 Ti3C2 层内,从而保持了银基的高导电性。对含有 10 wt.% Ti3AlC2 的银基复合材料进行 0.5 小时蚀刻的实验结果表明,与 Ag/Ti3AlC2 相比,电阻率显著降低了 51%,而机械性能仅降低了 10%。这些发现强调了操纵 Ti3AlC2 中的 A 位元素来提高银基复合材料性能的有效性,为先进的电学材料设计提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Achieving highly conductive Ag/Ti3AlC2 composite by inhibiting interdiffusion

Interfacial behavior in composites significantly influences their properties. Ag-based composites reinforced with Ti3AlC2 (a MAX phase) are promising for electrical contacts. However, interdiffusion between the Ag matrix and Ti3AlC2 increases impurities in the Ag matrix, adversely affecting electrical resistance and raising operational temperatures. To address this, we developed a novel partial etching pretreatment that selectively etches Al atoms from the near-surface region of Ti3AlC2, creating a Ti3C2 surface layer. This innovative approach confines interdiffusion mainly within the Ti3C2 layer, preserving the Ag matrix's high electrical conductivity. Experimental results for Ag-based composites with 10 wt.% of Ti3AlC2, subjected to 0.5 h etching, show a significant 51 % reduction in electrical resistivity with only a 10 % decrease in mechanical properties compared to Ag/Ti3AlC2. These findings underscore the effectiveness of manipulating A-site elements in Ti3AlC2 to enhance the performance of Ag-based composites, offering valuable insights for advanced electrical material design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
Effect of B4C addition on the microstructure and mechanical properties of 304L austenitic stainless steel fabricated using laser powder bed fusion Modelling the evolution of microstructural bands in a martensite/austenite Q&P-processed stainless steel Editorial Board Strain glass state in Ni50.3Ti29.7Hf20 high-temperature shape memory alloy An in-situ Raman spectroscopy investigation of the oxidation of proton irradiated and cold-worked 304L stainless steel in oxygenated water at 300°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1