铌酸锂-钽酸锂固溶体中质子交换层的结构和性质

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-09-07 DOI:10.1016/j.ssi.2024.116692
{"title":"铌酸锂-钽酸锂固溶体中质子交换层的结构和性质","authors":"","doi":"10.1016/j.ssi.2024.116692","DOIUrl":null,"url":null,"abstract":"<div><p>New optical materials, in particular mixed lithium niobate-tantalate (LNT) solid solutions, are promising for application in photonics and microelectronics. Proton exchange is one of the widely used methods for producing low-contrast optical waveguides. The structure and properties of the proton exchange layers in <em>X</em>- and <em>Z</em>-cut samples were systematically studied using various structural and integrated optical methods. Direct proton exchange leads to the formation of a waveguide layer with a step-like refractive index profile. The waveguide-substrate boundary is clear (not blurred). At this boundary, the parameters of the crystal lattice change abruptly. Proton exchange leads to with the formation of deformation twins and surface damage of the LNT crystal structure. Indices and geometric parameters of surface damage were determined. The results of phase analysis of the samples indicate the presence of <em>β</em>-phases with high degrees of deformation of the crystal lattice. The calculated kinetic parameters of proton diffusion in LNT are significantly lower than for lithium niobate crystals, which is due to both the tantalum impurity and the greater disorder of the crystal lattice, and this leads to a decrease in the increment of the refractive index. The results provide a physical basis of diffuse process and design and fabrication of proton exchange waveguides in mixed LNT solid solutions.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and properties of proton exchange layers in lithium niobate-tantalate solid solutions\",\"authors\":\"\",\"doi\":\"10.1016/j.ssi.2024.116692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>New optical materials, in particular mixed lithium niobate-tantalate (LNT) solid solutions, are promising for application in photonics and microelectronics. Proton exchange is one of the widely used methods for producing low-contrast optical waveguides. The structure and properties of the proton exchange layers in <em>X</em>- and <em>Z</em>-cut samples were systematically studied using various structural and integrated optical methods. Direct proton exchange leads to the formation of a waveguide layer with a step-like refractive index profile. The waveguide-substrate boundary is clear (not blurred). At this boundary, the parameters of the crystal lattice change abruptly. Proton exchange leads to with the formation of deformation twins and surface damage of the LNT crystal structure. Indices and geometric parameters of surface damage were determined. The results of phase analysis of the samples indicate the presence of <em>β</em>-phases with high degrees of deformation of the crystal lattice. The calculated kinetic parameters of proton diffusion in LNT are significantly lower than for lithium niobate crystals, which is due to both the tantalum impurity and the greater disorder of the crystal lattice, and this leads to a decrease in the increment of the refractive index. The results provide a physical basis of diffuse process and design and fabrication of proton exchange waveguides in mixed LNT solid solutions.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824002406\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002406","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

新型光学材料,尤其是铌酸钽酸锂(LNT)混合固溶体,在光子学和微电子学领域的应用前景广阔。质子交换是生产低对比度光波导的广泛应用方法之一。利用各种结构和集成光学方法,对 X 切和 Z 切样品中质子交换层的结构和性质进行了系统研究。质子直接交换导致形成具有阶梯状折射率轮廓的波导层。波导-基底边界清晰(不模糊)。在这个边界上,晶格参数发生了突变。质子交换导致 LNT 晶体结构形成变形孪晶和表面损伤。对表面损伤的指数和几何参数进行了测定。样品的相分析结果表明存在晶格高度变形的 β 相。计算得出的质子在铌酸锂晶体中扩散的动力学参数明显低于铌酸锂晶体,这既是由于钽杂质的存在,也是由于晶格的无序程度较高,从而导致折射率的增量下降。这些结果为混合铌酸锂固溶体中的扩散过程以及质子交换波导的设计和制造提供了物理基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure and properties of proton exchange layers in lithium niobate-tantalate solid solutions

New optical materials, in particular mixed lithium niobate-tantalate (LNT) solid solutions, are promising for application in photonics and microelectronics. Proton exchange is one of the widely used methods for producing low-contrast optical waveguides. The structure and properties of the proton exchange layers in X- and Z-cut samples were systematically studied using various structural and integrated optical methods. Direct proton exchange leads to the formation of a waveguide layer with a step-like refractive index profile. The waveguide-substrate boundary is clear (not blurred). At this boundary, the parameters of the crystal lattice change abruptly. Proton exchange leads to with the formation of deformation twins and surface damage of the LNT crystal structure. Indices and geometric parameters of surface damage were determined. The results of phase analysis of the samples indicate the presence of β-phases with high degrees of deformation of the crystal lattice. The calculated kinetic parameters of proton diffusion in LNT are significantly lower than for lithium niobate crystals, which is due to both the tantalum impurity and the greater disorder of the crystal lattice, and this leads to a decrease in the increment of the refractive index. The results provide a physical basis of diffuse process and design and fabrication of proton exchange waveguides in mixed LNT solid solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Enhancing cycling stability in Li-rich layered oxides by atomic layer deposition of LiNbO3 nanolayers Performance improvement tactics of sensitized solar cells based on CuInS2 quantum dots prepared by high temperature hot injection Synthesis and electrochemical properties of Li+-ion conducting solid electrolytes in the system xLiCl·(25-x)LiBr·75Li3PS4 Investigation of factors enhancing electrochemical properties of the porous La0.6Sr0.4CoO3-δ–Ce0.9Gd0.1O1.95 composite electrode for solid oxide fuel cell Impact of multi-cationic B-sublattice upon crystal structure, transport and electrochemical properties of perovskite oxides LaBO3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1