通过模态分解表征流体动力学和磁流体动力学状态下的非线性流动动力学

IF 2.5 3区 工程技术 Q2 MECHANICS European Journal of Mechanics B-fluids Pub Date : 2024-09-04 DOI:10.1016/j.euromechflu.2024.08.008
Vishnu Asokakumar Sreekala , Bidesh Sengupta
{"title":"通过模态分解表征流体动力学和磁流体动力学状态下的非线性流动动力学","authors":"Vishnu Asokakumar Sreekala ,&nbsp;Bidesh Sengupta","doi":"10.1016/j.euromechflu.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>The study delves into the dynamic behavior of fluid flows in hydrodynamic (HD) and magnetohydrodynamic (MHD) regimes, specifically focusing on the influence of varying magnetic field strengths on vortex shedding around a cylinder. Employing advanced modal decomposition techniques such as Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD), the research unveils the intricate characteristics of these flow fields. In HD scenarios, the flow exhibits complex, periodic patterns with notable vortex shedding, whereas in MHD scenarios, the introduction of magnetic fields gradually transforms the flow into a more stable and streamlined state. The study significantly demonstrates the damping effect of magnetic fields on vortex intensity and oscillations, leading to a uniform flow at higher field strengths. This study leverages DMD to predict future flow dynamics in both HD and MHD regimes around a cylinder. By using snapshots from CFD simulations at Re <span><math><mo>=</mo></math></span> 120, we validate DMD’s predictive capabilities by comparing predicted snapshots with CFD results at corresponding time instants. This approach not only demonstrates DMD’s robustness in capturing complex flow behaviors but also highlights its potential for real-time monitoring and control in industrial applications. The findings provide new insights into the temporal dynamics of MHD flows and open avenues for optimizing flow control strategies in engineering systems.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"109 ","pages":"Pages 37-54"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0997754624001225/pdfft?md5=e0a5d2ec8c67cdd997d5b0229c813672&pid=1-s2.0-S0997754624001225-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterizing nonlinear flow dynamics in hydrodynamic and magnetohydrodynamic regimes through modal decomposition\",\"authors\":\"Vishnu Asokakumar Sreekala ,&nbsp;Bidesh Sengupta\",\"doi\":\"10.1016/j.euromechflu.2024.08.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study delves into the dynamic behavior of fluid flows in hydrodynamic (HD) and magnetohydrodynamic (MHD) regimes, specifically focusing on the influence of varying magnetic field strengths on vortex shedding around a cylinder. Employing advanced modal decomposition techniques such as Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD), the research unveils the intricate characteristics of these flow fields. In HD scenarios, the flow exhibits complex, periodic patterns with notable vortex shedding, whereas in MHD scenarios, the introduction of magnetic fields gradually transforms the flow into a more stable and streamlined state. The study significantly demonstrates the damping effect of magnetic fields on vortex intensity and oscillations, leading to a uniform flow at higher field strengths. This study leverages DMD to predict future flow dynamics in both HD and MHD regimes around a cylinder. By using snapshots from CFD simulations at Re <span><math><mo>=</mo></math></span> 120, we validate DMD’s predictive capabilities by comparing predicted snapshots with CFD results at corresponding time instants. This approach not only demonstrates DMD’s robustness in capturing complex flow behaviors but also highlights its potential for real-time monitoring and control in industrial applications. The findings provide new insights into the temporal dynamics of MHD flows and open avenues for optimizing flow control strategies in engineering systems.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"109 \",\"pages\":\"Pages 37-54\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0997754624001225/pdfft?md5=e0a5d2ec8c67cdd997d5b0229c813672&pid=1-s2.0-S0997754624001225-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754624001225\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001225","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

该研究深入探讨了流体在流体动力学(HD)和磁流体动力学(MHD)状态下的动态行为,尤其侧重于不同磁场强度对圆柱体周围涡流脱落的影响。研究采用了先进的模态分解技术,如适当正交分解(POD)和动态模态分解(DMD),揭示了这些流场的复杂特性。在高密度情况下,流动呈现出复杂的周期性模式,并伴有明显的涡流脱落;而在多流体力学情况下,磁场的引入会逐渐将流动转变为更加稳定和流线型的状态。这项研究极大地证明了磁场对涡旋强度和振荡的阻尼效应,从而导致在较高磁场强度下的均匀流动。本研究利用 DMD 预测了围绕圆柱体的 HD 和 MHD 态的未来流动动力学。通过使用 Re = 120 时的 CFD 模拟快照,我们比较了预测快照和相应时间点的 CFD 结果,从而验证了 DMD 的预测能力。这种方法不仅证明了 DMD 在捕捉复杂流动行为方面的鲁棒性,还突出了其在工业应用中进行实时监测和控制的潜力。这些发现为 MHD 流动的时间动态提供了新的见解,并为优化工程系统中的流动控制策略开辟了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing nonlinear flow dynamics in hydrodynamic and magnetohydrodynamic regimes through modal decomposition

The study delves into the dynamic behavior of fluid flows in hydrodynamic (HD) and magnetohydrodynamic (MHD) regimes, specifically focusing on the influence of varying magnetic field strengths on vortex shedding around a cylinder. Employing advanced modal decomposition techniques such as Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD), the research unveils the intricate characteristics of these flow fields. In HD scenarios, the flow exhibits complex, periodic patterns with notable vortex shedding, whereas in MHD scenarios, the introduction of magnetic fields gradually transforms the flow into a more stable and streamlined state. The study significantly demonstrates the damping effect of magnetic fields on vortex intensity and oscillations, leading to a uniform flow at higher field strengths. This study leverages DMD to predict future flow dynamics in both HD and MHD regimes around a cylinder. By using snapshots from CFD simulations at Re = 120, we validate DMD’s predictive capabilities by comparing predicted snapshots with CFD results at corresponding time instants. This approach not only demonstrates DMD’s robustness in capturing complex flow behaviors but also highlights its potential for real-time monitoring and control in industrial applications. The findings provide new insights into the temporal dynamics of MHD flows and open avenues for optimizing flow control strategies in engineering systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
期刊最新文献
Reconstruction of unstable atmospheric surface layer streamwise turbulence based on multi-layer perceptron neural network architecture Instability in heated water-porous system Viscous fingering analysis for water-drive oil in the inclined plane Influence of structural parameters on the performance of fluid oscillators Prediction of wind loading on masked angle members in lattice tower structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1