用于提取和表征露兜树(Pandanus amaryllifolius)植物化学物质和抗氧化剂的非热技术和溶剂系统的比较分析

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-08-29 DOI:10.1016/j.cherd.2024.08.036
Subhanki Padhi , Kishan Kishor Gupta , Shristi Shefali Saraugi, Rachna Sehrawat, Winny Routray
{"title":"用于提取和表征露兜树(Pandanus amaryllifolius)植物化学物质和抗氧化剂的非热技术和溶剂系统的比较分析","authors":"Subhanki Padhi ,&nbsp;Kishan Kishor Gupta ,&nbsp;Shristi Shefali Saraugi,&nbsp;Rachna Sehrawat,&nbsp;Winny Routray","doi":"10.1016/j.cherd.2024.08.036","DOIUrl":null,"url":null,"abstract":"<div><p><em>Pandanus amaryllifolius</em> leaves (PAL) are known for their aroma and are also a rich source of natural phytochemicals. The purity, yield, and stability of phytochemicals depend upon the efficiency and selectiveness of the extraction method and the solvent used. In this study, the phytochemical and antioxidant activity of PAL were evaluated by using non-thermal extraction techniques, i.e., ultrasound (US) and cold plasma (CP). The extraction was evaluated using two different solvents: petroleum ether and 30 % ethanol. Face-centered central composite design was used to design the experimental parameters. The process parameters used were amplitude (30, 45, and 60 %) and treatment time (15, 30, and 45 min) for US, and voltage (10, 20, and 30 kV) and time (10, 20, and 30 min) for CP. The extraction efficiency of both the treatment methods and solvents was evaluated based on the quantification of total phenolics, flavonoids, terpenoids, chlorophyll content, and antioxidant activity. The damaged cell structure as observed from SEM images, confirmed the extraction of phytochemicals. The presence of phenolic and flavonoid compounds in the extract of PAL was confirmed from the FTIR analysis, revealing its nutritional and medicinal properties. Antioxidant activity was higher in case of 30 % ethanol as compared to petroleum ether. In the case of phenolic compounds, CP along with ethanol, had higher extraction efficiency. The use of non-thermal technology along with a suitable solvent can extract phytochemicals and antioxidants from PAL that can be further utilized for value-added product development.</p></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"210 ","pages":"Pages 212-229"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of non-thermal technologies and solvent systems for the extraction and characterization of phytochemicals and antioxidants in Pandanus amaryllifolius\",\"authors\":\"Subhanki Padhi ,&nbsp;Kishan Kishor Gupta ,&nbsp;Shristi Shefali Saraugi,&nbsp;Rachna Sehrawat,&nbsp;Winny Routray\",\"doi\":\"10.1016/j.cherd.2024.08.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Pandanus amaryllifolius</em> leaves (PAL) are known for their aroma and are also a rich source of natural phytochemicals. The purity, yield, and stability of phytochemicals depend upon the efficiency and selectiveness of the extraction method and the solvent used. In this study, the phytochemical and antioxidant activity of PAL were evaluated by using non-thermal extraction techniques, i.e., ultrasound (US) and cold plasma (CP). The extraction was evaluated using two different solvents: petroleum ether and 30 % ethanol. Face-centered central composite design was used to design the experimental parameters. The process parameters used were amplitude (30, 45, and 60 %) and treatment time (15, 30, and 45 min) for US, and voltage (10, 20, and 30 kV) and time (10, 20, and 30 min) for CP. The extraction efficiency of both the treatment methods and solvents was evaluated based on the quantification of total phenolics, flavonoids, terpenoids, chlorophyll content, and antioxidant activity. The damaged cell structure as observed from SEM images, confirmed the extraction of phytochemicals. The presence of phenolic and flavonoid compounds in the extract of PAL was confirmed from the FTIR analysis, revealing its nutritional and medicinal properties. Antioxidant activity was higher in case of 30 % ethanol as compared to petroleum ether. In the case of phenolic compounds, CP along with ethanol, had higher extraction efficiency. The use of non-thermal technology along with a suitable solvent can extract phytochemicals and antioxidants from PAL that can be further utilized for value-added product development.</p></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"210 \",\"pages\":\"Pages 212-229\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224005148\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005148","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

露兜树(Pandanus amaryllifolius)叶以其芳香而闻名,也是天然植物化学物质的丰富来源。植物化学物质的纯度、产量和稳定性取决于提取方法和所用溶剂的效率和选择性。本研究采用超声波(US)和冷等离子体(CP)等非热萃取技术对 PAL 的植物化学成分和抗氧化活性进行了评估。萃取时使用了两种不同的溶剂:石油醚和 30% 的乙醇。采用面心中心复合设计来设计实验参数。US 采用的工艺参数为振幅(30%、45% 和 60%)和处理时间(15%、30% 和 45%),CP 采用的工艺参数为电压(10%、20% 和 30%)和时间(10%、20% 和 30%)。根据总酚、类黄酮、萜类化合物、叶绿素含量和抗氧化活性的定量分析,评估了两种处理方法和溶剂的提取效率。通过扫描电镜图像观察到的受损细胞结构证实了植物化学物质的提取。傅立叶变换红外光谱分析证实了 PAL 提取物中存在酚类和类黄酮化合物,揭示了其营养和药用特性。与石油醚相比,30 % 乙醇提取物的抗氧化活性更高。就酚类化合物而言,氯化石蜡和乙醇的提取效率更高。使用非热技术和合适的溶剂可以从 PAL 中提取植物化学物质和抗氧化剂,并进一步用于增值产品的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of non-thermal technologies and solvent systems for the extraction and characterization of phytochemicals and antioxidants in Pandanus amaryllifolius

Pandanus amaryllifolius leaves (PAL) are known for their aroma and are also a rich source of natural phytochemicals. The purity, yield, and stability of phytochemicals depend upon the efficiency and selectiveness of the extraction method and the solvent used. In this study, the phytochemical and antioxidant activity of PAL were evaluated by using non-thermal extraction techniques, i.e., ultrasound (US) and cold plasma (CP). The extraction was evaluated using two different solvents: petroleum ether and 30 % ethanol. Face-centered central composite design was used to design the experimental parameters. The process parameters used were amplitude (30, 45, and 60 %) and treatment time (15, 30, and 45 min) for US, and voltage (10, 20, and 30 kV) and time (10, 20, and 30 min) for CP. The extraction efficiency of both the treatment methods and solvents was evaluated based on the quantification of total phenolics, flavonoids, terpenoids, chlorophyll content, and antioxidant activity. The damaged cell structure as observed from SEM images, confirmed the extraction of phytochemicals. The presence of phenolic and flavonoid compounds in the extract of PAL was confirmed from the FTIR analysis, revealing its nutritional and medicinal properties. Antioxidant activity was higher in case of 30 % ethanol as compared to petroleum ether. In the case of phenolic compounds, CP along with ethanol, had higher extraction efficiency. The use of non-thermal technology along with a suitable solvent can extract phytochemicals and antioxidants from PAL that can be further utilized for value-added product development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
The effect of green hydrogen feed rate variations on e-methanol synthesis by dynamic simulation A re-optimized design of mesh-type transition zone for large-scale PEM fuel cells considering two-phase flow distribution Experimental investigation in a forced draft wet cooling tower using aluminum oxide nano particles Optimising furfural production from lignocellulosic biomass: Feedstock selection, Process enhancement, and Techno-Economic and Environmental viability Coagulative removal of polyethylene microplastics using polyaluminum chloride in conjunction with laminarin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1