{"title":"在聚吡咯导电水凝胶介导的直流治疗中抑制大肠杆菌的呼吸并使其细胞凋亡","authors":"Qinglong Ding , Bing Li , Xiao Fan , Wei Wang","doi":"10.1016/j.bioelechem.2024.108796","DOIUrl":null,"url":null,"abstract":"<div><p>Targeting oxidative phosphorylation of bacteria is a novel antibiotic strategy leading to rapid cell death as a result of respiration suppress. Herein, a conductive polymer termed polypyrrole (PPy) is used to short-circuit the electron transfer chain (ETC) of bacteria cells owing to its higher electron affinity to electrons than all of the electron carriers on ETC. A hydrogel is fabricated using PPy which is anticipated to seize electrons from ETC and inhibit respiration of bacteria cells. The results show that the prepared PPy hydrogel can mediate an effective direct current (DC) antibacterial therapy which greatly enhances intracellular reactive oxygen species (ROS) level of Escherichia coli (<em>E. coli</em>), suppresses respiration, induces apoptosis-like cell death of <em>E. coli</em> accompanied by chromosomal condensation and loss of structural integrity, and rapidly cleared <em>E. coli</em> infection <em>in vivo</em>. Taken into the photothermal property of PPy, a combined direct current-photothermal therapy is developed which can enhance bacteria-killing effects with the assistance of an 808 nm laser. Our findings provide a new antibiotic strategy with metabolic pathway as a target.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"161 ","pages":"Article 108796"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567539424001580/pdfft?md5=820b55846d3e78c8892b35c4a6c433e3&pid=1-s2.0-S1567539424001580-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Respiration suppress and apoptosis-like cell death of Escherichia coli in direct current therapy mediated by polypyrrole conductive hydrogel\",\"authors\":\"Qinglong Ding , Bing Li , Xiao Fan , Wei Wang\",\"doi\":\"10.1016/j.bioelechem.2024.108796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Targeting oxidative phosphorylation of bacteria is a novel antibiotic strategy leading to rapid cell death as a result of respiration suppress. Herein, a conductive polymer termed polypyrrole (PPy) is used to short-circuit the electron transfer chain (ETC) of bacteria cells owing to its higher electron affinity to electrons than all of the electron carriers on ETC. A hydrogel is fabricated using PPy which is anticipated to seize electrons from ETC and inhibit respiration of bacteria cells. The results show that the prepared PPy hydrogel can mediate an effective direct current (DC) antibacterial therapy which greatly enhances intracellular reactive oxygen species (ROS) level of Escherichia coli (<em>E. coli</em>), suppresses respiration, induces apoptosis-like cell death of <em>E. coli</em> accompanied by chromosomal condensation and loss of structural integrity, and rapidly cleared <em>E. coli</em> infection <em>in vivo</em>. Taken into the photothermal property of PPy, a combined direct current-photothermal therapy is developed which can enhance bacteria-killing effects with the assistance of an 808 nm laser. Our findings provide a new antibiotic strategy with metabolic pathway as a target.</p></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"161 \",\"pages\":\"Article 108796\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1567539424001580/pdfft?md5=820b55846d3e78c8892b35c4a6c433e3&pid=1-s2.0-S1567539424001580-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539424001580\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001580","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Respiration suppress and apoptosis-like cell death of Escherichia coli in direct current therapy mediated by polypyrrole conductive hydrogel
Targeting oxidative phosphorylation of bacteria is a novel antibiotic strategy leading to rapid cell death as a result of respiration suppress. Herein, a conductive polymer termed polypyrrole (PPy) is used to short-circuit the electron transfer chain (ETC) of bacteria cells owing to its higher electron affinity to electrons than all of the electron carriers on ETC. A hydrogel is fabricated using PPy which is anticipated to seize electrons from ETC and inhibit respiration of bacteria cells. The results show that the prepared PPy hydrogel can mediate an effective direct current (DC) antibacterial therapy which greatly enhances intracellular reactive oxygen species (ROS) level of Escherichia coli (E. coli), suppresses respiration, induces apoptosis-like cell death of E. coli accompanied by chromosomal condensation and loss of structural integrity, and rapidly cleared E. coli infection in vivo. Taken into the photothermal property of PPy, a combined direct current-photothermal therapy is developed which can enhance bacteria-killing effects with the assistance of an 808 nm laser. Our findings provide a new antibiotic strategy with metabolic pathway as a target.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.