竹制多孔碳上的低温退火铁掺杂氧化锌:用于不对称超级电容器的高性能三元纳米复合材料,具有卓越的电容和稳定性

Energy Storage Pub Date : 2024-09-06 DOI:10.1002/est2.70037
Sivagaami Sundari Gunasekaran, Sujin P. Jose, Kumar Vediappan, Changwoo Lee, Raghu Subashchandrabose
{"title":"竹制多孔碳上的低温退火铁掺杂氧化锌:用于不对称超级电容器的高性能三元纳米复合材料,具有卓越的电容和稳定性","authors":"Sivagaami Sundari Gunasekaran,&nbsp;Sujin P. Jose,&nbsp;Kumar Vediappan,&nbsp;Changwoo Lee,&nbsp;Raghu Subashchandrabose","doi":"10.1002/est2.70037","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this study, we present a strategy of synergistic lowest-temperature annealing, and solvent-casting to synthesize Fe-doped ZnO anchored porous activated carbon-based ternary nanocomposite for asymmetric supercapacitor applications with an extended potential window of 1.2 V. The prepared nanocomposite shows a “stacked-table” like morphology with pores in the surface and walls of the carbon matrix. The incorporation of Fe-doped ZnO onto the carbon skeleton improves the conductivity by controlling morphology and specific capacitances through fast electron transfer property. The prepared nanocomposite delivers a specific capacitance of ~930 Fg<sup>−1</sup> at 1 Ag<sup>−1</sup>. The fabricated ASC device delivers the specific capacitance of ~480 Fg<sup>−1</sup>, energy and power density of ~266.6 Whkg<sup>−1</sup> and ~1998.5 Wkg<sup>−1</sup> at a current of 1 and 10 Ag<sup>−1</sup> respectively, respectively maintaining its remarkable capacitance of about 98.5% across 10 000 cycles. This superior performance can be attributed to the significant contact between the positive/negative electrode and the electrolyte which reduces the pathway of the diffused ions and enhances the conductivity of the porous carbon material aiding the electrons to travel towards the current collector. The low-temperature annealing and solvent casting strategy pave the way for the use of facile synthesis of Fe-doped ZnO as an efficient material for high-power supercapacitor applications.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Temperature Annealed Fe-Doped ZnO on Bamboo-Derived Porous Carbon: High-Performance Ternary Nanocomposite for Asymmetric Supercapacitors With Superior Capacitance and Stability\",\"authors\":\"Sivagaami Sundari Gunasekaran,&nbsp;Sujin P. Jose,&nbsp;Kumar Vediappan,&nbsp;Changwoo Lee,&nbsp;Raghu Subashchandrabose\",\"doi\":\"10.1002/est2.70037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this study, we present a strategy of synergistic lowest-temperature annealing, and solvent-casting to synthesize Fe-doped ZnO anchored porous activated carbon-based ternary nanocomposite for asymmetric supercapacitor applications with an extended potential window of 1.2 V. The prepared nanocomposite shows a “stacked-table” like morphology with pores in the surface and walls of the carbon matrix. The incorporation of Fe-doped ZnO onto the carbon skeleton improves the conductivity by controlling morphology and specific capacitances through fast electron transfer property. The prepared nanocomposite delivers a specific capacitance of ~930 Fg<sup>−1</sup> at 1 Ag<sup>−1</sup>. The fabricated ASC device delivers the specific capacitance of ~480 Fg<sup>−1</sup>, energy and power density of ~266.6 Whkg<sup>−1</sup> and ~1998.5 Wkg<sup>−1</sup> at a current of 1 and 10 Ag<sup>−1</sup> respectively, respectively maintaining its remarkable capacitance of about 98.5% across 10 000 cycles. This superior performance can be attributed to the significant contact between the positive/negative electrode and the electrolyte which reduces the pathway of the diffused ions and enhances the conductivity of the porous carbon material aiding the electrons to travel towards the current collector. The low-temperature annealing and solvent casting strategy pave the way for the use of facile synthesis of Fe-doped ZnO as an efficient material for high-power supercapacitor applications.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们采用最低温退火和溶剂浇铸的协同策略,合成了掺铁氧化锌锚定多孔活性碳三元纳米复合材料,用于扩展电位窗口(1.2 V)的不对称超级电容器应用。所制备的纳米复合材料呈现出 "叠台 "状形态,碳基质的表面和壁上都有孔隙。在碳骨架上加入掺杂铁的氧化锌,可通过控制形貌和快速电子转移特性提高比电容,从而改善导电性。所制备的纳米复合材料在 1 Ag-1 时的比电容为 ~930 Fg-1。在电流为 1 Ag-1 和 10 Ag-1 时,制备的 ASC 器件的比电容为 ~480 Fg-1,能量和功率密度分别为 ~266.6 Whkg-1 和 ~1998.5 Wkg-1,在 10 000 次循环中保持了约 98.5% 的显著电容率。这种优异的性能可归功于正/负电极与电解液之间的显著接触,这种接触减少了扩散离子的路径,并增强了多孔碳材料的导电性,有助于电子向集电极移动。低温退火和溶剂浇铸策略为方便合成掺铁氧化锌作为大功率超级电容器应用的高效材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Temperature Annealed Fe-Doped ZnO on Bamboo-Derived Porous Carbon: High-Performance Ternary Nanocomposite for Asymmetric Supercapacitors With Superior Capacitance and Stability

In this study, we present a strategy of synergistic lowest-temperature annealing, and solvent-casting to synthesize Fe-doped ZnO anchored porous activated carbon-based ternary nanocomposite for asymmetric supercapacitor applications with an extended potential window of 1.2 V. The prepared nanocomposite shows a “stacked-table” like morphology with pores in the surface and walls of the carbon matrix. The incorporation of Fe-doped ZnO onto the carbon skeleton improves the conductivity by controlling morphology and specific capacitances through fast electron transfer property. The prepared nanocomposite delivers a specific capacitance of ~930 Fg−1 at 1 Ag−1. The fabricated ASC device delivers the specific capacitance of ~480 Fg−1, energy and power density of ~266.6 Whkg−1 and ~1998.5 Wkg−1 at a current of 1 and 10 Ag−1 respectively, respectively maintaining its remarkable capacitance of about 98.5% across 10 000 cycles. This superior performance can be attributed to the significant contact between the positive/negative electrode and the electrolyte which reduces the pathway of the diffused ions and enhances the conductivity of the porous carbon material aiding the electrons to travel towards the current collector. The low-temperature annealing and solvent casting strategy pave the way for the use of facile synthesis of Fe-doped ZnO as an efficient material for high-power supercapacitor applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
An Innovative Energy Storage System Based on Phase Change Material and Solar Energy Integrated With an Air Handling Unit to Produce Heating and Cooling Performance Analysis of a Renewable-Powered Multi-Gas Floating Storage and Regasification Facility for Ammonia Vessels With Reconversion to Hydrogen The Solid-State Battery Applicational Technology: Material Characteristics and Charge–Discharge Mechanisms of Iron Chloride Electrodes Hydrogen Storage Studies of Nanocomposites Derived From O-Ethyl-S-((5-Methoxy-1H-Benzo[d]Imidazol-2-Yl)Carbonothioate (OESMBIC) With ZnO and TiO2 Nanoparticles Performance Enhancement of Solar Still Couples With Solar Water Heater by Using Different PCM's and Nanoparticle Combinations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1