通过几何中值和引导进行高维多变量方差分析。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae088
Guanghui Cheng, Ruitao Lin, Liuhua Peng
{"title":"通过几何中值和引导进行高维多变量方差分析。","authors":"Guanghui Cheng, Ruitao Lin, Liuhua Peng","doi":"10.1093/biomtc/ujae088","DOIUrl":null,"url":null,"abstract":"<p><p>The geometric median, which is applicable to high-dimensional data, can be viewed as a generalization of the univariate median used in 1-dimensional data. It can be used as a robust estimator for identifying the location of multi-dimensional data and has a wide range of applications in real-world scenarios. This paper explores the problem of high-dimensional multivariate analysis of variance (MANOVA) using the geometric median. A maximum-type statistic that relies on the differences between the geometric medians among various groups is introduced. The distribution of the new test statistic is derived under the null hypothesis using Gaussian approximations, and its consistency under the alternative hypothesis is established. To approximate the distribution of the new statistic in high dimensions, a wild bootstrap algorithm is proposed and theoretically justified. Through simulation studies conducted across a variety of dimensions, sample sizes, and data-generating models, we demonstrate the finite-sample performance of our geometric median-based MANOVA method. Additionally, we implement the proposed approach to analyze a breast cancer gene expression dataset.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381952/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-dimensional multivariate analysis of variance via geometric median and bootstrapping.\",\"authors\":\"Guanghui Cheng, Ruitao Lin, Liuhua Peng\",\"doi\":\"10.1093/biomtc/ujae088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The geometric median, which is applicable to high-dimensional data, can be viewed as a generalization of the univariate median used in 1-dimensional data. It can be used as a robust estimator for identifying the location of multi-dimensional data and has a wide range of applications in real-world scenarios. This paper explores the problem of high-dimensional multivariate analysis of variance (MANOVA) using the geometric median. A maximum-type statistic that relies on the differences between the geometric medians among various groups is introduced. The distribution of the new test statistic is derived under the null hypothesis using Gaussian approximations, and its consistency under the alternative hypothesis is established. To approximate the distribution of the new statistic in high dimensions, a wild bootstrap algorithm is proposed and theoretically justified. Through simulation studies conducted across a variety of dimensions, sample sizes, and data-generating models, we demonstrate the finite-sample performance of our geometric median-based MANOVA method. Additionally, we implement the proposed approach to analyze a breast cancer gene expression dataset.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae088\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae088","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

几何中值适用于高维数据,可视为用于一维数据的单变量中值的一般化。它可以作为一种稳健的估计器来识别多维数据的位置,在现实世界中有着广泛的应用。本文探讨了使用几何中值进行高维多变量方差分析(MANOVA)的问题。本文介绍了一种依赖于各组间几何中值差异的最大值型统计量。利用高斯近似法得出了新检验统计量在零假设下的分布,并确定了其在备择假设下的一致性。为了逼近新统计量在高维度下的分布,提出了一种野生引导算法,并从理论上证明了该算法的合理性。通过对各种维度、样本大小和数据生成模型进行模拟研究,我们证明了基于几何中值的 MANOVA 方法的有限样本性能。此外,我们还利用提出的方法分析了乳腺癌基因表达数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-dimensional multivariate analysis of variance via geometric median and bootstrapping.

The geometric median, which is applicable to high-dimensional data, can be viewed as a generalization of the univariate median used in 1-dimensional data. It can be used as a robust estimator for identifying the location of multi-dimensional data and has a wide range of applications in real-world scenarios. This paper explores the problem of high-dimensional multivariate analysis of variance (MANOVA) using the geometric median. A maximum-type statistic that relies on the differences between the geometric medians among various groups is introduced. The distribution of the new test statistic is derived under the null hypothesis using Gaussian approximations, and its consistency under the alternative hypothesis is established. To approximate the distribution of the new statistic in high dimensions, a wild bootstrap algorithm is proposed and theoretically justified. Through simulation studies conducted across a variety of dimensions, sample sizes, and data-generating models, we demonstrate the finite-sample performance of our geometric median-based MANOVA method. Additionally, we implement the proposed approach to analyze a breast cancer gene expression dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1