Xin-Jia Cai, Chao-Ran Peng, Ying-Ying Cui, Long Li, Ming-Wei Huang, He-Yu Zhang, Jian-Yun Zhang, Tie-Jun Li
{"title":"利用基于病理组学的人工智能识别口腔白斑病和头颈部鳞状细胞癌的基因组改变和预后:一项多中心实验研究。","authors":"Xin-Jia Cai, Chao-Ran Peng, Ying-Ying Cui, Long Li, Ming-Wei Huang, He-Yu Zhang, Jian-Yun Zhang, Tie-Jun Li","doi":"10.1097/JS9.0000000000002077","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Loss of chromosome 9p is an important biomarker in the malignant transformation of oral leukoplakia (OLK) to head and neck squamous cell carcinoma (HNSCC), and is associated with the prognosis of HNSCC patients. However, various challenges have prevented 9p loss from being assessed in clinical practice. The objective of this study was to develop a pathomics-based artificial intelligence (AI) model for the rapid and cost-effective prediction of 9p loss (9PLP).</p><p><strong>Materials and methods: </strong>333 OLK cases were retrospectively collected with hematoxylin and eosin (H&E)-stained whole slide images and genomic alteration data from multicenter cohorts to develop the genomic alteration prediction AI model. They were divided into a training dataset (n=217), a validation dataset (n=93), and an external testing dataset (n=23). The latest Transformer method and XGBoost algorithm were combined to develop the 9PLP model. The AI model was further applied and validated in two multicenter HNSCC datasets (n=42, n=365, respectively). Moreover, the combination of 9PLP with clinicopathological parameters was used to develop a nomogram model for assessing HNSCC patient prognosis.</p><p><strong>Results: </strong>9PLP could predict chromosome 9p loss rapidly and effectively using both OLK and HNSCC images, with the area under the curve achieving 0.890 and 0.825, respectively. Furthermore, the predictive model showed high accuracy in HNSCC patient prognosis assessment (the area under the curve was 0.739 for 1-year prediction, 0.705 for 3-year prediction, and 0.691 for 5-year prediction).</p><p><strong>Conclusion: </strong>To the best of our knowledge, this study developed the first genomic alteration prediction deep learning model in OLK and HNSCC. This novel AI model could predict 9p loss and assess patient prognosis by identifying pathomics features in H&E-stained images with good performance. In the future, the 9PLP model may potentially contribute to better clinical management of OLK and HNSCC.</p>","PeriodicalId":14401,"journal":{"name":"International journal of surgery","volume":" ","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of genomic alteration and prognosis using pathomics-based artificial intelligence in oral leukoplakia and head and neck squamous cell carcinoma: A multicenter experimental study.\",\"authors\":\"Xin-Jia Cai, Chao-Ran Peng, Ying-Ying Cui, Long Li, Ming-Wei Huang, He-Yu Zhang, Jian-Yun Zhang, Tie-Jun Li\",\"doi\":\"10.1097/JS9.0000000000002077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Loss of chromosome 9p is an important biomarker in the malignant transformation of oral leukoplakia (OLK) to head and neck squamous cell carcinoma (HNSCC), and is associated with the prognosis of HNSCC patients. However, various challenges have prevented 9p loss from being assessed in clinical practice. The objective of this study was to develop a pathomics-based artificial intelligence (AI) model for the rapid and cost-effective prediction of 9p loss (9PLP).</p><p><strong>Materials and methods: </strong>333 OLK cases were retrospectively collected with hematoxylin and eosin (H&E)-stained whole slide images and genomic alteration data from multicenter cohorts to develop the genomic alteration prediction AI model. They were divided into a training dataset (n=217), a validation dataset (n=93), and an external testing dataset (n=23). The latest Transformer method and XGBoost algorithm were combined to develop the 9PLP model. The AI model was further applied and validated in two multicenter HNSCC datasets (n=42, n=365, respectively). Moreover, the combination of 9PLP with clinicopathological parameters was used to develop a nomogram model for assessing HNSCC patient prognosis.</p><p><strong>Results: </strong>9PLP could predict chromosome 9p loss rapidly and effectively using both OLK and HNSCC images, with the area under the curve achieving 0.890 and 0.825, respectively. Furthermore, the predictive model showed high accuracy in HNSCC patient prognosis assessment (the area under the curve was 0.739 for 1-year prediction, 0.705 for 3-year prediction, and 0.691 for 5-year prediction).</p><p><strong>Conclusion: </strong>To the best of our knowledge, this study developed the first genomic alteration prediction deep learning model in OLK and HNSCC. This novel AI model could predict 9p loss and assess patient prognosis by identifying pathomics features in H&E-stained images with good performance. In the future, the 9PLP model may potentially contribute to better clinical management of OLK and HNSCC.</p>\",\"PeriodicalId\":14401,\"journal\":{\"name\":\"International journal of surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/JS9.0000000000002077\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/JS9.0000000000002077","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
Identification of genomic alteration and prognosis using pathomics-based artificial intelligence in oral leukoplakia and head and neck squamous cell carcinoma: A multicenter experimental study.
Background: Loss of chromosome 9p is an important biomarker in the malignant transformation of oral leukoplakia (OLK) to head and neck squamous cell carcinoma (HNSCC), and is associated with the prognosis of HNSCC patients. However, various challenges have prevented 9p loss from being assessed in clinical practice. The objective of this study was to develop a pathomics-based artificial intelligence (AI) model for the rapid and cost-effective prediction of 9p loss (9PLP).
Materials and methods: 333 OLK cases were retrospectively collected with hematoxylin and eosin (H&E)-stained whole slide images and genomic alteration data from multicenter cohorts to develop the genomic alteration prediction AI model. They were divided into a training dataset (n=217), a validation dataset (n=93), and an external testing dataset (n=23). The latest Transformer method and XGBoost algorithm were combined to develop the 9PLP model. The AI model was further applied and validated in two multicenter HNSCC datasets (n=42, n=365, respectively). Moreover, the combination of 9PLP with clinicopathological parameters was used to develop a nomogram model for assessing HNSCC patient prognosis.
Results: 9PLP could predict chromosome 9p loss rapidly and effectively using both OLK and HNSCC images, with the area under the curve achieving 0.890 and 0.825, respectively. Furthermore, the predictive model showed high accuracy in HNSCC patient prognosis assessment (the area under the curve was 0.739 for 1-year prediction, 0.705 for 3-year prediction, and 0.691 for 5-year prediction).
Conclusion: To the best of our knowledge, this study developed the first genomic alteration prediction deep learning model in OLK and HNSCC. This novel AI model could predict 9p loss and assess patient prognosis by identifying pathomics features in H&E-stained images with good performance. In the future, the 9PLP model may potentially contribute to better clinical management of OLK and HNSCC.
期刊介绍:
The International Journal of Surgery (IJS) has a broad scope, encompassing all surgical specialties. Its primary objective is to facilitate the exchange of crucial ideas and lines of thought between and across these specialties.By doing so, the journal aims to counter the growing trend of increasing sub-specialization, which can result in "tunnel-vision" and the isolation of significant surgical advancements within specific specialties.