Lang Chen, Xiaobing Pang, Zhentao Wu, Riyang Huang, Junyu Hu, Yi Liu, Lei Zhou, Jue Zhou, Zhiwen Wang
{"title":"无人驾驶飞行器配备传感器包,用于研究工业园区空气污染物的时空变化。","authors":"Lang Chen, Xiaobing Pang, Zhentao Wu, Riyang Huang, Junyu Hu, Yi Liu, Lei Zhou, Jue Zhou, Zhiwen Wang","doi":"10.1098/rsta.2023.0314","DOIUrl":null,"url":null,"abstract":"<p><p>Unmanned aerial vehicles (UAVs) equipped with a miniaturized sensor package were developed for aerial observations, which realizes aerial observations affordable to scientists in atmospheric science and achieves aerial measurements in high spatial resolution. UAVs are deployed to a variety of aerial detecting tasks in different scientific scenarios including chemical industry parks (CIPs) with hazardous gases emissions, and some places difficult for humans to reach. In this study, UAV sensing technology was deployed to detect air pollutants in a suburb, a CIP and a natural gas plant, respectively. The effects of atmospheric conditions such as the atmospheric boundary layer height, long-distance transport and atmospheric stability on the spatiotemporal variations of the air pollutants vertical profiles were investigated by the UAV. The UAV with the sensor package was deployed to capture the methane (CH<sub>4</sub>) leakages in a natural gas plant. The spatiotemporal variations of CH<sub>4</sub> in both vertical and horizontal directions studied by UAV were employed to calculate accurate CH<sub>4</sub> emissions, which is crucial to reducing the emissions of greenhouse gases. The low-cost UAV sensing technology for air pollutants was developed by Dr. Xiaobing Pang, who was funded by the Newton Fellowship in 2009 and worked in the University of York. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20230314"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unmanned aerial vehicles equipped with sensor packages to study spatiotemporal variations of air pollutants in industry parks.\",\"authors\":\"Lang Chen, Xiaobing Pang, Zhentao Wu, Riyang Huang, Junyu Hu, Yi Liu, Lei Zhou, Jue Zhou, Zhiwen Wang\",\"doi\":\"10.1098/rsta.2023.0314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unmanned aerial vehicles (UAVs) equipped with a miniaturized sensor package were developed for aerial observations, which realizes aerial observations affordable to scientists in atmospheric science and achieves aerial measurements in high spatial resolution. UAVs are deployed to a variety of aerial detecting tasks in different scientific scenarios including chemical industry parks (CIPs) with hazardous gases emissions, and some places difficult for humans to reach. In this study, UAV sensing technology was deployed to detect air pollutants in a suburb, a CIP and a natural gas plant, respectively. The effects of atmospheric conditions such as the atmospheric boundary layer height, long-distance transport and atmospheric stability on the spatiotemporal variations of the air pollutants vertical profiles were investigated by the UAV. The UAV with the sensor package was deployed to capture the methane (CH<sub>4</sub>) leakages in a natural gas plant. The spatiotemporal variations of CH<sub>4</sub> in both vertical and horizontal directions studied by UAV were employed to calculate accurate CH<sub>4</sub> emissions, which is crucial to reducing the emissions of greenhouse gases. The low-cost UAV sensing technology for air pollutants was developed by Dr. Xiaobing Pang, who was funded by the Newton Fellowship in 2009 and worked in the University of York. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2281\",\"pages\":\"20230314\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0314\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0314","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Unmanned aerial vehicles equipped with sensor packages to study spatiotemporal variations of air pollutants in industry parks.
Unmanned aerial vehicles (UAVs) equipped with a miniaturized sensor package were developed for aerial observations, which realizes aerial observations affordable to scientists in atmospheric science and achieves aerial measurements in high spatial resolution. UAVs are deployed to a variety of aerial detecting tasks in different scientific scenarios including chemical industry parks (CIPs) with hazardous gases emissions, and some places difficult for humans to reach. In this study, UAV sensing technology was deployed to detect air pollutants in a suburb, a CIP and a natural gas plant, respectively. The effects of atmospheric conditions such as the atmospheric boundary layer height, long-distance transport and atmospheric stability on the spatiotemporal variations of the air pollutants vertical profiles were investigated by the UAV. The UAV with the sensor package was deployed to capture the methane (CH4) leakages in a natural gas plant. The spatiotemporal variations of CH4 in both vertical and horizontal directions studied by UAV were employed to calculate accurate CH4 emissions, which is crucial to reducing the emissions of greenhouse gases. The low-cost UAV sensing technology for air pollutants was developed by Dr. Xiaobing Pang, who was funded by the Newton Fellowship in 2009 and worked in the University of York. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.