基于无源射频标签传感的超低频振动信号新型测试方法。

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-09-01 DOI:10.1063/5.0217499
Litai Lou, Jianhua Yang, Kaixuan Ma, Tao Gong, Zhongqiu Wang, Baofeng Li
{"title":"基于无源射频标签传感的超低频振动信号新型测试方法。","authors":"Litai Lou, Jianhua Yang, Kaixuan Ma, Tao Gong, Zhongqiu Wang, Baofeng Li","doi":"10.1063/5.0217499","DOIUrl":null,"url":null,"abstract":"<p><p>Ultra-low-frequency vibration is prevalent in many critical research fields. Nevertheless, for ultra-low-frequency vibration signals below 1 Hz, there is currently a lack of a cost-effective and efficient measurement method. A new ultra-low-frequency vibration signal testing method based on the passive radio frequency tag phase is proposed using the Radio Frequency Identification (RFID) sensing method. By employing vibration detection on ultra-low-frequency vibration signals, the effectiveness of the proposed approach across different frequencies is validated while thoroughly considering factors such as measurement range, precision, distance, and occlusion effects. The results indicate that this method can accurately measure ultra-low frequency vibration signals as low as 0.01 Hz, with an average relative error of only less than 1.5% for all measurement results, and the error decreases with increasing detection frequency. For the measurement of a 1 Hz vibration signal, the average relative error is less than 1%. In addition, the measurement accuracy remains unaffected by distance or occlusion. Sensitivity and stability tests are also conducted. Continuous monitoring for 8 hours demonstrates the excellent measurement stability of the proposed method. Finally, a performance comparison has been made with laser displacement sensors commonly used in non-contact ultra-low-frequency measurement methods. The results show that the RFID sensing method can detect lower vibration frequencies and has a larger amplitude measurement range and better environmental adaptability. Overall, for ultra-low-frequency vibration, this method offers advantages such as high precision, passive non-contact operation, non-line-of-sight path monitoring, affordability, and convenience. These attributes render it suitable for extensive application in various engineering scenarios requiring ultra-low-frequency vibration testing.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel testing method for ultra-low-frequency vibration signal based on passive radio frequency tag sensing.\",\"authors\":\"Litai Lou, Jianhua Yang, Kaixuan Ma, Tao Gong, Zhongqiu Wang, Baofeng Li\",\"doi\":\"10.1063/5.0217499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultra-low-frequency vibration is prevalent in many critical research fields. Nevertheless, for ultra-low-frequency vibration signals below 1 Hz, there is currently a lack of a cost-effective and efficient measurement method. A new ultra-low-frequency vibration signal testing method based on the passive radio frequency tag phase is proposed using the Radio Frequency Identification (RFID) sensing method. By employing vibration detection on ultra-low-frequency vibration signals, the effectiveness of the proposed approach across different frequencies is validated while thoroughly considering factors such as measurement range, precision, distance, and occlusion effects. The results indicate that this method can accurately measure ultra-low frequency vibration signals as low as 0.01 Hz, with an average relative error of only less than 1.5% for all measurement results, and the error decreases with increasing detection frequency. For the measurement of a 1 Hz vibration signal, the average relative error is less than 1%. In addition, the measurement accuracy remains unaffected by distance or occlusion. Sensitivity and stability tests are also conducted. Continuous monitoring for 8 hours demonstrates the excellent measurement stability of the proposed method. Finally, a performance comparison has been made with laser displacement sensors commonly used in non-contact ultra-low-frequency measurement methods. The results show that the RFID sensing method can detect lower vibration frequencies and has a larger amplitude measurement range and better environmental adaptability. Overall, for ultra-low-frequency vibration, this method offers advantages such as high precision, passive non-contact operation, non-line-of-sight path monitoring, affordability, and convenience. These attributes render it suitable for extensive application in various engineering scenarios requiring ultra-low-frequency vibration testing.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0217499\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0217499","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

超低频振动在许多关键研究领域都很普遍。然而,对于低于 1 Hz 的超低频振动信号,目前还缺乏一种经济有效的测量方法。利用射频识别(RFID)传感方法,提出了一种基于无源射频标签阶段的新型超低频振动信号测试方法。通过对超低频率振动信号进行振动检测,验证了所提方法在不同频率下的有效性,同时全面考虑了测量范围、精度、距离和遮挡效应等因素。结果表明,该方法可精确测量低至 0.01 Hz 的超低频振动信号,所有测量结果的平均相对误差仅小于 1.5%,且误差随检测频率的增加而减小。在测量 1 赫兹的振动信号时,平均相对误差小于 1%。此外,测量精度不受距离或遮挡的影响。此外,还进行了灵敏度和稳定性测试。连续 8 小时的监测表明,该方法具有出色的测量稳定性。最后,还与非接触式超低频测量方法中常用的激光位移传感器进行了性能比较。结果表明,射频识别传感方法可以检测到更低的振动频率,具有更大的振幅测量范围和更好的环境适应性。总之,对于超低频振动,这种方法具有精度高、无源非接触操作、非视线路径监测、经济实惠和方便快捷等优点。这些特性使其适合广泛应用于各种需要超低频振动测试的工程场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel testing method for ultra-low-frequency vibration signal based on passive radio frequency tag sensing.

Ultra-low-frequency vibration is prevalent in many critical research fields. Nevertheless, for ultra-low-frequency vibration signals below 1 Hz, there is currently a lack of a cost-effective and efficient measurement method. A new ultra-low-frequency vibration signal testing method based on the passive radio frequency tag phase is proposed using the Radio Frequency Identification (RFID) sensing method. By employing vibration detection on ultra-low-frequency vibration signals, the effectiveness of the proposed approach across different frequencies is validated while thoroughly considering factors such as measurement range, precision, distance, and occlusion effects. The results indicate that this method can accurately measure ultra-low frequency vibration signals as low as 0.01 Hz, with an average relative error of only less than 1.5% for all measurement results, and the error decreases with increasing detection frequency. For the measurement of a 1 Hz vibration signal, the average relative error is less than 1%. In addition, the measurement accuracy remains unaffected by distance or occlusion. Sensitivity and stability tests are also conducted. Continuous monitoring for 8 hours demonstrates the excellent measurement stability of the proposed method. Finally, a performance comparison has been made with laser displacement sensors commonly used in non-contact ultra-low-frequency measurement methods. The results show that the RFID sensing method can detect lower vibration frequencies and has a larger amplitude measurement range and better environmental adaptability. Overall, for ultra-low-frequency vibration, this method offers advantages such as high precision, passive non-contact operation, non-line-of-sight path monitoring, affordability, and convenience. These attributes render it suitable for extensive application in various engineering scenarios requiring ultra-low-frequency vibration testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
A liquid metal diffusion measurement technique integrating the x-ray radiography and multi-slice sliding cell. Classification of the L-, H-mode, and plasma-free state: Convolutional neural networks and variational autoencoders on the edge reflectometer for KSTAR. Design of a gamma threshold detector based on the bubble chamber for high-flux gamma beams. Development and construction of a cost-effective non-contact instrument for measuring the dielectric constant of liquids. Development of a compact bolometer camera concept for investigation of radiation asymmetries at Wendelstein 7-X.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1