通过二次斑点模式分析追踪微注视

Ola Shteinberg, Sergey Agdarov, Yafim Beiderman, Yoram S Bonneh, Inbal Ziv, Zeev Zalevsky
{"title":"通过二次斑点模式分析追踪微注视","authors":"Ola Shteinberg, Sergey Agdarov, Yafim Beiderman, Yoram S Bonneh, Inbal Ziv, Zeev Zalevsky","doi":"10.1002/jbio.202400184","DOIUrl":null,"url":null,"abstract":"<p><p>Here we propose a not pupil-dependent microsaccades tracking technique and a novel detection method. We present a proof of concept for detecting microsaccades using a non-contact laser-based photonic system recording and processing the temporal changes of speckle patterns scattered from an eye sclera. The data, simultaneously recorded by the speckle-based tracker (SBT) and the video-based eye tracker (Eyelink), was analyzed by the frequently used detection method of Engbert and Kliegl (E&K) and by advanced machine learning detection (MLD) techniques. We detected 93% of microsaccades in the SBT data out of microsaccades detected in the Eyelink data with the E&K method. By utilizing MLD, a precision of 86% was achieved. The findings of our study demonstrate a potential improvement in measuring tiny eye movements, such as microsaccades, using speckle-based eye tracking and, thus, an alternative to video-based eye tracking for detecting microsaccades.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400184"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microsaccades Tracking by Secondary Speckle Pattern Analysis.\",\"authors\":\"Ola Shteinberg, Sergey Agdarov, Yafim Beiderman, Yoram S Bonneh, Inbal Ziv, Zeev Zalevsky\",\"doi\":\"10.1002/jbio.202400184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Here we propose a not pupil-dependent microsaccades tracking technique and a novel detection method. We present a proof of concept for detecting microsaccades using a non-contact laser-based photonic system recording and processing the temporal changes of speckle patterns scattered from an eye sclera. The data, simultaneously recorded by the speckle-based tracker (SBT) and the video-based eye tracker (Eyelink), was analyzed by the frequently used detection method of Engbert and Kliegl (E&K) and by advanced machine learning detection (MLD) techniques. We detected 93% of microsaccades in the SBT data out of microsaccades detected in the Eyelink data with the E&K method. By utilizing MLD, a precision of 86% was achieved. The findings of our study demonstrate a potential improvement in measuring tiny eye movements, such as microsaccades, using speckle-based eye tracking and, thus, an alternative to video-based eye tracking for detecting microsaccades.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202400184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们提出了一种不依赖瞳孔的微注视跟踪技术和一种新颖的检测方法。我们提出了一种利用非接触式激光光子系统检测微注视的概念验证,该系统记录并处理从眼睛巩膜散射出的斑点图案的时间变化。数据由基于斑点的跟踪器(SBT)和基于视频的眼球跟踪器(Eyelink)同时记录,并通过常用的恩格伯特和克里格尔(E&K)检测方法以及先进的机器学习检测(MLD)技术进行分析。在 Eyelink 数据中使用 E&K 方法检测到的微注视中,我们在 SBT 数据中检测到了 93% 的微注视。通过使用 MLD,精确度达到了 86%。我们的研究结果表明,使用基于斑点的眼动仪测量微小的眼球运动(如微注视)具有潜在的改进空间,因此可以替代基于视频的眼动仪来检测微注视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microsaccades Tracking by Secondary Speckle Pattern Analysis.

Here we propose a not pupil-dependent microsaccades tracking technique and a novel detection method. We present a proof of concept for detecting microsaccades using a non-contact laser-based photonic system recording and processing the temporal changes of speckle patterns scattered from an eye sclera. The data, simultaneously recorded by the speckle-based tracker (SBT) and the video-based eye tracker (Eyelink), was analyzed by the frequently used detection method of Engbert and Kliegl (E&K) and by advanced machine learning detection (MLD) techniques. We detected 93% of microsaccades in the SBT data out of microsaccades detected in the Eyelink data with the E&K method. By utilizing MLD, a precision of 86% was achieved. The findings of our study demonstrate a potential improvement in measuring tiny eye movements, such as microsaccades, using speckle-based eye tracking and, thus, an alternative to video-based eye tracking for detecting microsaccades.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urine Analysed by FTIR, Chemometrics and Machine Learning Methods in Determination Spectroscopy Marker of Prostate Cancer in Urine. A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study. Raman Spectroscopic Analysis of Urinary Creatine and Phosphate in Athletes: Pre- and Post-Training Assessment. Estimation of Scattering Properties Modifications Caused by In Vivo Human Skin Optical Clearing Using Line-Field Confocal Optical Coherence Tomography. Feasibility Study of Label-Free Raman Spectroscopy for Parathyroid Gland Identification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1