探索纳米结构镍薄膜随厚度变化的结构、化学和磁学特性

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Vacuum Pub Date : 2024-09-05 DOI:10.1016/j.vacuum.2024.113619
{"title":"探索纳米结构镍薄膜随厚度变化的结构、化学和磁学特性","authors":"","doi":"10.1016/j.vacuum.2024.113619","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel thin films were deposited to the different thicknesses onto glass substrates using electron-beam glancing angle deposition. The changes in the structural, chemical, and magnetic properties of the films have been investigated. The obtained morphological and microstructural results revealed that the deposited samples consisted of vertical columns with a thickness in the range of 50 nm to 140 nm and a diameter of 15 nm to 29 nm. With the increase in film thickness, the surface roughness increases as well. Chemical analysis showed that the main phase in the samples is metallic Ni, with a certain amount of NiO. In addition, magnetic measurements exhibit that all Ni films show typical hysteresis loops with a uniaxial magnetic anisotropy. The coercivity was found to increase with the thickness up to 110 nm followed by its further decrease, probably due to the differences in the structure of the columns themselves as well as the combined contributions of two different antiferromagnetic (NiO) and ferromagnetic (Ni) phases created in the deposited nanostructures.</p></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring thickness-dependent structural, chemical and magnetic properties of nanostructured nickel thin films\",\"authors\":\"\",\"doi\":\"10.1016/j.vacuum.2024.113619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nickel thin films were deposited to the different thicknesses onto glass substrates using electron-beam glancing angle deposition. The changes in the structural, chemical, and magnetic properties of the films have been investigated. The obtained morphological and microstructural results revealed that the deposited samples consisted of vertical columns with a thickness in the range of 50 nm to 140 nm and a diameter of 15 nm to 29 nm. With the increase in film thickness, the surface roughness increases as well. Chemical analysis showed that the main phase in the samples is metallic Ni, with a certain amount of NiO. In addition, magnetic measurements exhibit that all Ni films show typical hysteresis loops with a uniaxial magnetic anisotropy. The coercivity was found to increase with the thickness up to 110 nm followed by its further decrease, probably due to the differences in the structure of the columns themselves as well as the combined contributions of two different antiferromagnetic (NiO) and ferromagnetic (Ni) phases created in the deposited nanostructures.</p></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24006651\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24006651","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用电子束闪角沉积法在玻璃基底上沉积了不同厚度的镍薄膜。研究了薄膜在结构、化学和磁性方面的变化。所获得的形态和微观结构结果表明,沉积样品由垂直柱状组成,厚度在 50 纳米到 140 纳米之间,直径在 15 纳米到 29 纳米之间。随着薄膜厚度的增加,表面粗糙度也随之增加。化学分析显示,样品中的主要相为金属镍,并含有一定量的氧化镍。此外,磁性测量结果表明,所有镍薄膜都显示出典型的磁滞环,具有单轴磁各向异性。矫顽力随着厚度的增加而增加,最高可达 110 nm,随后进一步降低,这可能是由于柱体本身结构的差异,以及沉积纳米结构中产生的两种不同的反铁磁性(NiO)和铁磁性(Ni)相的共同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring thickness-dependent structural, chemical and magnetic properties of nanostructured nickel thin films

Nickel thin films were deposited to the different thicknesses onto glass substrates using electron-beam glancing angle deposition. The changes in the structural, chemical, and magnetic properties of the films have been investigated. The obtained morphological and microstructural results revealed that the deposited samples consisted of vertical columns with a thickness in the range of 50 nm to 140 nm and a diameter of 15 nm to 29 nm. With the increase in film thickness, the surface roughness increases as well. Chemical analysis showed that the main phase in the samples is metallic Ni, with a certain amount of NiO. In addition, magnetic measurements exhibit that all Ni films show typical hysteresis loops with a uniaxial magnetic anisotropy. The coercivity was found to increase with the thickness up to 110 nm followed by its further decrease, probably due to the differences in the structure of the columns themselves as well as the combined contributions of two different antiferromagnetic (NiO) and ferromagnetic (Ni) phases created in the deposited nanostructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
期刊最新文献
Ethanol recognition based on carbon quantum dots sensitized Ti3C2Tx MXene and its enhancement effect of ultraviolet condition under low temperature Overall fabrication of uniform BN interphase on 2.5D-SiC fabric via precursor-derived methods Microstructure evolution and mechanical properties of brazing seam of SiCp/Al composites-TC4 titanium alloy composite structure with different La content Microstructure evolution, mechanical properties, and corrosion behavior of in-situ TiC/TC4 composites through Mo addition Determination of fast electrons energy absorbed in the air by measuring the concentration of ozone synthesized in electron beam plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1