核包膜扩张机制

IF 6 2区 生物学 Q1 CELL BIOLOGY Current Opinion in Cell Biology Pub Date : 2024-09-08 DOI:10.1016/j.ceb.2024.102425
Christopher Ptak , Saif Rehman , Richard W. Wozniak
{"title":"核包膜扩张机制","authors":"Christopher Ptak ,&nbsp;Saif Rehman ,&nbsp;Richard W. Wozniak","doi":"10.1016/j.ceb.2024.102425","DOIUrl":null,"url":null,"abstract":"<div><p>In actively dividing eukaryotic cells, the nuclear envelope membrane (NEM) expands during the cell cycle to accommodate increases in nuclear volume and formation of two nuclei as a cell passes through mitosis to form daughter cells. NEM expansion is driven by glycerophospholipid (GPL) synthesis that is regulated by the lipin family of phosphatidic acid phosphatases (PAPs). How, and when during the cell cycle, PAPs regulate membrane expansion differs between organisms undergoing a closed or open mitosis. Here, we discuss recent studies that shed light on the mechanisms of NE expansion. Moreover, we examine evidence that NEM expansion not only employs GPLs synthesized in the ER but also lipids whose synthesis is regulated by events at the inner nuclear membrane.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"91 ","pages":"Article 102425"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424001042/pdfft?md5=5d606c4acd899cc6dbe1979656ab3001&pid=1-s2.0-S0955067424001042-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of nuclear envelope expansion\",\"authors\":\"Christopher Ptak ,&nbsp;Saif Rehman ,&nbsp;Richard W. Wozniak\",\"doi\":\"10.1016/j.ceb.2024.102425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In actively dividing eukaryotic cells, the nuclear envelope membrane (NEM) expands during the cell cycle to accommodate increases in nuclear volume and formation of two nuclei as a cell passes through mitosis to form daughter cells. NEM expansion is driven by glycerophospholipid (GPL) synthesis that is regulated by the lipin family of phosphatidic acid phosphatases (PAPs). How, and when during the cell cycle, PAPs regulate membrane expansion differs between organisms undergoing a closed or open mitosis. Here, we discuss recent studies that shed light on the mechanisms of NE expansion. Moreover, we examine evidence that NEM expansion not only employs GPLs synthesized in the ER but also lipids whose synthesis is regulated by events at the inner nuclear membrane.</p></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"91 \",\"pages\":\"Article 102425\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0955067424001042/pdfft?md5=5d606c4acd899cc6dbe1979656ab3001&pid=1-s2.0-S0955067424001042-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067424001042\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424001042","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在活跃分裂的真核细胞中,核包膜(NEM)会在细胞周期中扩张,以适应核体积的增加,并在细胞通过有丝分裂形成子细胞时形成两个核。核包膜的扩张是由甘油磷脂(GPL)合成驱动的,而甘油磷脂的合成受磷脂酸磷酸酶(PAPs)脂蛋白家族的调控。在细胞周期中,PAPs如何以及何时调节膜的扩张,在进行封闭式或开放式有丝分裂的生物体中有所不同。在此,我们将讨论最近的一些研究,这些研究揭示了NE扩张的机制。此外,我们还研究了一些证据,证明核膜扩张不仅利用了在内质网中合成的 GPL,还利用了其合成受核内膜事件调控的脂质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms of nuclear envelope expansion

In actively dividing eukaryotic cells, the nuclear envelope membrane (NEM) expands during the cell cycle to accommodate increases in nuclear volume and formation of two nuclei as a cell passes through mitosis to form daughter cells. NEM expansion is driven by glycerophospholipid (GPL) synthesis that is regulated by the lipin family of phosphatidic acid phosphatases (PAPs). How, and when during the cell cycle, PAPs regulate membrane expansion differs between organisms undergoing a closed or open mitosis. Here, we discuss recent studies that shed light on the mechanisms of NE expansion. Moreover, we examine evidence that NEM expansion not only employs GPLs synthesized in the ER but also lipids whose synthesis is regulated by events at the inner nuclear membrane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
期刊最新文献
Mechanochemical control systems regulating animal cell size Septin dynamics and organization in mammalian cells Waves of change: Dynamic actomyosin networks in embryonic development Cellular morphodynamics and signaling around the transcellular passage cleft during rhizobial infections of legume roots Endothelial cell mechanics and dynamics in angiogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1