Pushpak Pati, Sofia Karkampouna, Francesco Bonollo, Eva Compérat, Martina Radić, Martin Spahn, Adriano Martinelli, Martin Wartenberg, Marianna Kruithof-de Julio, Marianna Rapsomaniki
{"title":"利用基于生成式人工智能的虚拟多重肿瘤特征分析加速组织病理学工作流程","authors":"Pushpak Pati, Sofia Karkampouna, Francesco Bonollo, Eva Compérat, Martina Radić, Martin Spahn, Adriano Martinelli, Martin Wartenberg, Marianna Kruithof-de Julio, Marianna Rapsomaniki","doi":"10.1038/s42256-024-00889-5","DOIUrl":null,"url":null,"abstract":"Understanding the spatial heterogeneity of tumours and its links to disease initiation and progression is a cornerstone of cancer biology. Presently, histopathology workflows heavily rely on hematoxylin and eosin and serial immunohistochemistry staining, a cumbersome, tissue-exhaustive process that results in non-aligned tissue images. We propose the VirtualMultiplexer, a generative artificial intelligence toolkit that effectively synthesizes multiplexed immunohistochemistry images for several antibody markers (namely AR, NKX3.1, CD44, CD146, p53 and ERG) from only an input hematoxylin and eosin image. The VirtualMultiplexer captures biologically relevant staining patterns across tissue scales without requiring consecutive tissue sections, image registration or extensive expert annotations. Thorough qualitative and quantitative assessment indicates that the VirtualMultiplexer achieves rapid, robust and precise generation of virtually multiplexed imaging datasets of high staining quality that are indistinguishable from the real ones. The VirtualMultiplexer is successfully transferred across tissue scales and patient cohorts with no need for model fine-tuning. Crucially, the virtually multiplexed images enabled training a graph transformer that simultaneously learns from the joint spatial distribution of several proteins to predict clinically relevant endpoints. We observe that this multiplexed learning scheme was able to greatly improve clinical prediction, as corroborated across several downstream tasks, independent patient cohorts and cancer types. Our results showcase the clinical relevance of artificial intelligence-assisted multiplexed tumour imaging, accelerating histopathology workflows and cancer biology. VirtualMultiplexer is a generative AI tool that produces realistic multiplexed immunohistochemistry images from tissue biopsies. The generated images could be used to improve clinical predictions, enhancing histopathology workflows and accelerating cancer research.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 9","pages":"1077-1093"},"PeriodicalIF":18.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42256-024-00889-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Accelerating histopathology workflows with generative AI-based virtually multiplexed tumour profiling\",\"authors\":\"Pushpak Pati, Sofia Karkampouna, Francesco Bonollo, Eva Compérat, Martina Radić, Martin Spahn, Adriano Martinelli, Martin Wartenberg, Marianna Kruithof-de Julio, Marianna Rapsomaniki\",\"doi\":\"10.1038/s42256-024-00889-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the spatial heterogeneity of tumours and its links to disease initiation and progression is a cornerstone of cancer biology. Presently, histopathology workflows heavily rely on hematoxylin and eosin and serial immunohistochemistry staining, a cumbersome, tissue-exhaustive process that results in non-aligned tissue images. We propose the VirtualMultiplexer, a generative artificial intelligence toolkit that effectively synthesizes multiplexed immunohistochemistry images for several antibody markers (namely AR, NKX3.1, CD44, CD146, p53 and ERG) from only an input hematoxylin and eosin image. The VirtualMultiplexer captures biologically relevant staining patterns across tissue scales without requiring consecutive tissue sections, image registration or extensive expert annotations. Thorough qualitative and quantitative assessment indicates that the VirtualMultiplexer achieves rapid, robust and precise generation of virtually multiplexed imaging datasets of high staining quality that are indistinguishable from the real ones. The VirtualMultiplexer is successfully transferred across tissue scales and patient cohorts with no need for model fine-tuning. Crucially, the virtually multiplexed images enabled training a graph transformer that simultaneously learns from the joint spatial distribution of several proteins to predict clinically relevant endpoints. We observe that this multiplexed learning scheme was able to greatly improve clinical prediction, as corroborated across several downstream tasks, independent patient cohorts and cancer types. Our results showcase the clinical relevance of artificial intelligence-assisted multiplexed tumour imaging, accelerating histopathology workflows and cancer biology. VirtualMultiplexer is a generative AI tool that produces realistic multiplexed immunohistochemistry images from tissue biopsies. The generated images could be used to improve clinical predictions, enhancing histopathology workflows and accelerating cancer research.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"6 9\",\"pages\":\"1077-1093\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42256-024-00889-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-024-00889-5\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00889-5","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Accelerating histopathology workflows with generative AI-based virtually multiplexed tumour profiling
Understanding the spatial heterogeneity of tumours and its links to disease initiation and progression is a cornerstone of cancer biology. Presently, histopathology workflows heavily rely on hematoxylin and eosin and serial immunohistochemistry staining, a cumbersome, tissue-exhaustive process that results in non-aligned tissue images. We propose the VirtualMultiplexer, a generative artificial intelligence toolkit that effectively synthesizes multiplexed immunohistochemistry images for several antibody markers (namely AR, NKX3.1, CD44, CD146, p53 and ERG) from only an input hematoxylin and eosin image. The VirtualMultiplexer captures biologically relevant staining patterns across tissue scales without requiring consecutive tissue sections, image registration or extensive expert annotations. Thorough qualitative and quantitative assessment indicates that the VirtualMultiplexer achieves rapid, robust and precise generation of virtually multiplexed imaging datasets of high staining quality that are indistinguishable from the real ones. The VirtualMultiplexer is successfully transferred across tissue scales and patient cohorts with no need for model fine-tuning. Crucially, the virtually multiplexed images enabled training a graph transformer that simultaneously learns from the joint spatial distribution of several proteins to predict clinically relevant endpoints. We observe that this multiplexed learning scheme was able to greatly improve clinical prediction, as corroborated across several downstream tasks, independent patient cohorts and cancer types. Our results showcase the clinical relevance of artificial intelligence-assisted multiplexed tumour imaging, accelerating histopathology workflows and cancer biology. VirtualMultiplexer is a generative AI tool that produces realistic multiplexed immunohistochemistry images from tissue biopsies. The generated images could be used to improve clinical predictions, enhancing histopathology workflows and accelerating cancer research.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.