Yan Ma, Isabelle Flückiger, Jade Nicolet, Jia Pang, Joe B. Dickinson, Damien De Bellis, Aurélia Emonet, Satoshi Fujita, Niko Geldner
{"title":"单一细胞类型中两种受体-MAPK 通路的比较揭示了信号特异性机制","authors":"Yan Ma, Isabelle Flückiger, Jade Nicolet, Jia Pang, Joe B. Dickinson, Damien De Bellis, Aurélia Emonet, Satoshi Fujita, Niko Geldner","doi":"10.1038/s41477-024-01768-y","DOIUrl":null,"url":null,"abstract":"Cells harbour numerous receptor pathways to respond to diverse stimuli, yet often share common downstream signalling components. Mitogen-activated protein kinase (MPK) cascades are an example of such common hubs in eukaryotes. How such common hubs faithfully transduce distinct signals within the same cell-type is insufficiently understood, yet of fundamental importance for signal integration and processing in plants. We engineered a unique genetic background allowing direct comparisons of a developmental and an immunity pathway in one cell-type, the Arabidopsis root endodermis. We demonstrate that the two pathways maintain distinct functional and transcriptional outputs despite common MPK activity patterns. Nevertheless, activation of different MPK kinases and MPK classes led to distinct functional readouts, matching observed pathway-specific readouts. On the basis of our comprehensive analysis of core MPK signalling elements, we propose that combinatorial activation within the MPK cascade determines the differential regulation of an endodermal master transcription factor, MYB36, that drives pathway-specific gene activation. By comparing signalling of two receptor pathways in the same cell-type, the study describes maintenance of signalling specificity at a single-cell level and the role of MAPK networks in this process.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01768-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparisons of two receptor-MAPK pathways in a single cell-type reveal mechanisms of signalling specificity\",\"authors\":\"Yan Ma, Isabelle Flückiger, Jade Nicolet, Jia Pang, Joe B. Dickinson, Damien De Bellis, Aurélia Emonet, Satoshi Fujita, Niko Geldner\",\"doi\":\"10.1038/s41477-024-01768-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cells harbour numerous receptor pathways to respond to diverse stimuli, yet often share common downstream signalling components. Mitogen-activated protein kinase (MPK) cascades are an example of such common hubs in eukaryotes. How such common hubs faithfully transduce distinct signals within the same cell-type is insufficiently understood, yet of fundamental importance for signal integration and processing in plants. We engineered a unique genetic background allowing direct comparisons of a developmental and an immunity pathway in one cell-type, the Arabidopsis root endodermis. We demonstrate that the two pathways maintain distinct functional and transcriptional outputs despite common MPK activity patterns. Nevertheless, activation of different MPK kinases and MPK classes led to distinct functional readouts, matching observed pathway-specific readouts. On the basis of our comprehensive analysis of core MPK signalling elements, we propose that combinatorial activation within the MPK cascade determines the differential regulation of an endodermal master transcription factor, MYB36, that drives pathway-specific gene activation. By comparing signalling of two receptor pathways in the same cell-type, the study describes maintenance of signalling specificity at a single-cell level and the role of MAPK networks in this process.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41477-024-01768-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41477-024-01768-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01768-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Comparisons of two receptor-MAPK pathways in a single cell-type reveal mechanisms of signalling specificity
Cells harbour numerous receptor pathways to respond to diverse stimuli, yet often share common downstream signalling components. Mitogen-activated protein kinase (MPK) cascades are an example of such common hubs in eukaryotes. How such common hubs faithfully transduce distinct signals within the same cell-type is insufficiently understood, yet of fundamental importance for signal integration and processing in plants. We engineered a unique genetic background allowing direct comparisons of a developmental and an immunity pathway in one cell-type, the Arabidopsis root endodermis. We demonstrate that the two pathways maintain distinct functional and transcriptional outputs despite common MPK activity patterns. Nevertheless, activation of different MPK kinases and MPK classes led to distinct functional readouts, matching observed pathway-specific readouts. On the basis of our comprehensive analysis of core MPK signalling elements, we propose that combinatorial activation within the MPK cascade determines the differential regulation of an endodermal master transcription factor, MYB36, that drives pathway-specific gene activation. By comparing signalling of two receptor pathways in the same cell-type, the study describes maintenance of signalling specificity at a single-cell level and the role of MAPK networks in this process.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.