Xiaoqian Liu, Yupeng Cai, Weiwei Yao, Li Chen, Wensheng Hou
{"title":"大豆 NUCLEAR FACTOR-Y C4 和 α-EXPANSIN 7 模块通过调节根系形态影响磷的吸收","authors":"Xiaoqian Liu, Yupeng Cai, Weiwei Yao, Li Chen, Wensheng Hou","doi":"10.1093/plphys/kiae478","DOIUrl":null,"url":null,"abstract":"Soybean (Glycine max) is a globally important crop; however, its productivity is severely impacted by phosphorus (P) deficiency. Understanding the transcriptional regulation of low P (LP) response mechanisms is essential for enhancing soybean P use efficiency. In this study, we found that the Nuclear Factor-Y (NF-Y) transcription factor GmNF-YC4, in addition to its previously discovered role in regulating flowering time, possesses another functions in modulating root morphology and P uptake. Knockout of GmNF-YC4 notably boosted root proliferation and P uptake while also influencing the expression of genes related to LP stress. GmNF-YC4 acts as a specific DNA-binding transcriptional repressor, modulating the expression of the soybean α-EXPANSIN 7 (GmEXPA7) gene, which encodes a cell wall-loosening factor, through direct binding to its promoter region. Further investigation revealed that GmEXPA7 expression is predominantly root-specific and induced by LP. Moreover, overexpression of GmEXPA7 in soybean hairy roots enhanced LP tolerance by stimulating root growth and P uptake. We further screened and obtained more potential target genes of GmNF-YC4 via DNA affinity purification sequencing, including those related to LP stress. These findings underscore the pivotal role of the GmNF-YC4-GmEXPA7 module as a key regulator in mitigating LP stress in soybean.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The soybean NUCLEAR FACTOR-Y C4 and α-EXPANSIN 7 module influences phosphorus uptake by regulating root morphology\",\"authors\":\"Xiaoqian Liu, Yupeng Cai, Weiwei Yao, Li Chen, Wensheng Hou\",\"doi\":\"10.1093/plphys/kiae478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soybean (Glycine max) is a globally important crop; however, its productivity is severely impacted by phosphorus (P) deficiency. Understanding the transcriptional regulation of low P (LP) response mechanisms is essential for enhancing soybean P use efficiency. In this study, we found that the Nuclear Factor-Y (NF-Y) transcription factor GmNF-YC4, in addition to its previously discovered role in regulating flowering time, possesses another functions in modulating root morphology and P uptake. Knockout of GmNF-YC4 notably boosted root proliferation and P uptake while also influencing the expression of genes related to LP stress. GmNF-YC4 acts as a specific DNA-binding transcriptional repressor, modulating the expression of the soybean α-EXPANSIN 7 (GmEXPA7) gene, which encodes a cell wall-loosening factor, through direct binding to its promoter region. Further investigation revealed that GmEXPA7 expression is predominantly root-specific and induced by LP. Moreover, overexpression of GmEXPA7 in soybean hairy roots enhanced LP tolerance by stimulating root growth and P uptake. We further screened and obtained more potential target genes of GmNF-YC4 via DNA affinity purification sequencing, including those related to LP stress. These findings underscore the pivotal role of the GmNF-YC4-GmEXPA7 module as a key regulator in mitigating LP stress in soybean.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae478\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae478","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The soybean NUCLEAR FACTOR-Y C4 and α-EXPANSIN 7 module influences phosphorus uptake by regulating root morphology
Soybean (Glycine max) is a globally important crop; however, its productivity is severely impacted by phosphorus (P) deficiency. Understanding the transcriptional regulation of low P (LP) response mechanisms is essential for enhancing soybean P use efficiency. In this study, we found that the Nuclear Factor-Y (NF-Y) transcription factor GmNF-YC4, in addition to its previously discovered role in regulating flowering time, possesses another functions in modulating root morphology and P uptake. Knockout of GmNF-YC4 notably boosted root proliferation and P uptake while also influencing the expression of genes related to LP stress. GmNF-YC4 acts as a specific DNA-binding transcriptional repressor, modulating the expression of the soybean α-EXPANSIN 7 (GmEXPA7) gene, which encodes a cell wall-loosening factor, through direct binding to its promoter region. Further investigation revealed that GmEXPA7 expression is predominantly root-specific and induced by LP. Moreover, overexpression of GmEXPA7 in soybean hairy roots enhanced LP tolerance by stimulating root growth and P uptake. We further screened and obtained more potential target genes of GmNF-YC4 via DNA affinity purification sequencing, including those related to LP stress. These findings underscore the pivotal role of the GmNF-YC4-GmEXPA7 module as a key regulator in mitigating LP stress in soybean.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.