双 X 射线计算机断层扫描辅助对蠕变增材制造部件中的熔池边界和缺陷进行分类

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-09-04 DOI:10.1016/j.matchar.2024.114317
{"title":"双 X 射线计算机断层扫描辅助对蠕变增材制造部件中的熔池边界和缺陷进行分类","authors":"","doi":"10.1016/j.matchar.2024.114317","DOIUrl":null,"url":null,"abstract":"<div><p>In metal additive manufacturing (AM), understanding the process-structure-performance relationships requires a combination of multi-scale characterization techniques that allows for the measurement of the melt pool shape and boundary and classifying various defects and flaws in the AM parts. Such approaches can be destructive, only 2D in nature, or have a small field of view and can be complex to co-register and analyze. In this work, we present a non-destructive 3D inspection technique that employs dual-energy X-ray computed tomography (XCT) along with a model-based iterative reconstruction (MBIR) and a new segmentation algorithm. The proposed approach and algorithm are not only capable of classifying and quantifying flaws such as pores, cracks, and inclusions, but they also allow for the extraction of microstructural features such as melt pool boundaries (MPB) and melt pool regions (MPR), that can help understand process-structure-performance relationships for alloys under study. As an exemplar application, we employed the method for characterization of an additively manufactured aluminum alloy crept under tensile stress at 300 °C for 1064 h. Our results demonstrate high quality segmentation and classification of various flaws and MPB and MPR, for the first time, using 3D X-ray CT inspection. The delineated MPB and MPR in the crept samples reveal the preferential growth paths of cracks that formed during creep deformation. The technique was used for successfully quantifying the characteristics (number of defects, their density, volume fraction, etc.) of the manufacturing-induced pores and creep-induced cracks, which is necessary to better understand the creep failure mechanisms of the material.</p></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual X-ray computed tomography-aided classification of melt pool boundaries and flaws in crept additively manufactured parts\",\"authors\":\"\",\"doi\":\"10.1016/j.matchar.2024.114317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In metal additive manufacturing (AM), understanding the process-structure-performance relationships requires a combination of multi-scale characterization techniques that allows for the measurement of the melt pool shape and boundary and classifying various defects and flaws in the AM parts. Such approaches can be destructive, only 2D in nature, or have a small field of view and can be complex to co-register and analyze. In this work, we present a non-destructive 3D inspection technique that employs dual-energy X-ray computed tomography (XCT) along with a model-based iterative reconstruction (MBIR) and a new segmentation algorithm. The proposed approach and algorithm are not only capable of classifying and quantifying flaws such as pores, cracks, and inclusions, but they also allow for the extraction of microstructural features such as melt pool boundaries (MPB) and melt pool regions (MPR), that can help understand process-structure-performance relationships for alloys under study. As an exemplar application, we employed the method for characterization of an additively manufactured aluminum alloy crept under tensile stress at 300 °C for 1064 h. Our results demonstrate high quality segmentation and classification of various flaws and MPB and MPR, for the first time, using 3D X-ray CT inspection. The delineated MPB and MPR in the crept samples reveal the preferential growth paths of cracks that formed during creep deformation. The technique was used for successfully quantifying the characteristics (number of defects, their density, volume fraction, etc.) of the manufacturing-induced pores and creep-induced cracks, which is necessary to better understand the creep failure mechanisms of the material.</p></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324006983\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324006983","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

在金属增材制造(AM)中,要了解工艺-结构-性能之间的关系,需要结合多尺度表征技术,以测量熔池形状和边界,并对增材制造部件中的各种缺陷和瑕疵进行分类。这些方法可能是破坏性的,只具有二维性质,或者视场较小,而且共同注册和分析可能很复杂。在这项工作中,我们提出了一种非破坏性三维检测技术,该技术采用了双能量 X 射线计算机断层扫描 (XCT)、基于模型的迭代重建 (MBIR) 和新的分割算法。所提出的方法和算法不仅能对气孔、裂纹和夹杂物等缺陷进行分类和量化,还能提取熔池边界(MPB)和熔池区域(MPR)等微观结构特征,有助于了解所研究合金的工艺-结构-性能关系。作为示例应用,我们使用该方法表征了在 300 °C 拉伸应力下蠕变 1064 小时的添加制造铝合金。我们的结果表明,首次使用三维 X 射线 CT 检测对各种缺陷、MPB 和 MPR 进行了高质量的分割和分类。蠕变样品中划定的 MPB 和 MPR 揭示了蠕变变形过程中形成的裂纹的优先生长路径。该技术成功地量化了制造引起的孔隙和蠕变引起的裂纹的特征(缺陷数量、密度、体积分数等),这对于更好地理解材料的蠕变失效机制非常必要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual X-ray computed tomography-aided classification of melt pool boundaries and flaws in crept additively manufactured parts

In metal additive manufacturing (AM), understanding the process-structure-performance relationships requires a combination of multi-scale characterization techniques that allows for the measurement of the melt pool shape and boundary and classifying various defects and flaws in the AM parts. Such approaches can be destructive, only 2D in nature, or have a small field of view and can be complex to co-register and analyze. In this work, we present a non-destructive 3D inspection technique that employs dual-energy X-ray computed tomography (XCT) along with a model-based iterative reconstruction (MBIR) and a new segmentation algorithm. The proposed approach and algorithm are not only capable of classifying and quantifying flaws such as pores, cracks, and inclusions, but they also allow for the extraction of microstructural features such as melt pool boundaries (MPB) and melt pool regions (MPR), that can help understand process-structure-performance relationships for alloys under study. As an exemplar application, we employed the method for characterization of an additively manufactured aluminum alloy crept under tensile stress at 300 °C for 1064 h. Our results demonstrate high quality segmentation and classification of various flaws and MPB and MPR, for the first time, using 3D X-ray CT inspection. The delineated MPB and MPR in the crept samples reveal the preferential growth paths of cracks that formed during creep deformation. The technique was used for successfully quantifying the characteristics (number of defects, their density, volume fraction, etc.) of the manufacturing-induced pores and creep-induced cracks, which is necessary to better understand the creep failure mechanisms of the material.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Quantitative revealing the solute segregation behavior at melt pool boundary in additively manufactured stainless steel using a novel processing method for precise positioning by HAADF-STEM Enhanced high-temperature mechanical properties and strengthening mechanisms of chemically prepared nano-TiC reinforced IN738LC via laser powder bed fusion The effect of oxide scale on the corrosion resistance of SUS301L stainless steel welding joints Enhancing mechanical property and corrosion resistance of Al0.3CoCrFeNi1.5 high entropy alloy via grain boundary engineering Achieving high strength and ductility of Al-Zn-Mg-Cu alloys via laser shock peening and spray forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1