Hua Bingli, Li Hao, Yin Jiawei, Xu Hongtu, Chen Yukai, Han Bin, Zhang Qi
{"title":"用于 AA6061 的具有半固态触变成形特性的新型超声波滚动辅助直接能量沉积方法","authors":"Hua Bingli, Li Hao, Yin Jiawei, Xu Hongtu, Chen Yukai, Han Bin, Zhang Qi","doi":"10.1016/j.jmatprotec.2024.118572","DOIUrl":null,"url":null,"abstract":"<div><p>In order to overcome the defects during the process of additive manufacturing for AA6061, a novel ultrasonic rolling assisted direct energy deposition method with semi-solid thixo-forming characteristics was proposed in this study, which used cold deformed AA6061 wire as raw material, and a corresponding process platform was established. The results showed that under the conditions of laser heating temperature of 750 ℃ and heating plate temperature of 200 ℃, the sample could achieve continuous multi-pass deposition while retaining some of the cold-drawn plastic deformation energy. When the vertical deformation rate was 0.153 and the ultrasonic amplitude was 20 μm, the microstructure of deposition sample after semi-solid heat-treat exhibited typical equiaxed grain characteristics, corresponding to average grain diameter of 95.6 μm and shape coefficient of 1.263. Thin-walled samples with different shapes were formed to verify the capability of process platform. The inference of the formation mechanism of semi-solid microstructure was revealed at last: the introduction of ultrasonic rolling supplemented the plastic deformation energy, and semi-solid heat-treat provided temperature and time for the incubation of equiaxed grains, both of which were crucial for the formation of the semi-solid microstructure.</p></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"333 ","pages":"Article 118572"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel ultrasonic rolling assisted direct energy deposition method with semi-solid thixo-forming characteristics for AA6061\",\"authors\":\"Hua Bingli, Li Hao, Yin Jiawei, Xu Hongtu, Chen Yukai, Han Bin, Zhang Qi\",\"doi\":\"10.1016/j.jmatprotec.2024.118572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to overcome the defects during the process of additive manufacturing for AA6061, a novel ultrasonic rolling assisted direct energy deposition method with semi-solid thixo-forming characteristics was proposed in this study, which used cold deformed AA6061 wire as raw material, and a corresponding process platform was established. The results showed that under the conditions of laser heating temperature of 750 ℃ and heating plate temperature of 200 ℃, the sample could achieve continuous multi-pass deposition while retaining some of the cold-drawn plastic deformation energy. When the vertical deformation rate was 0.153 and the ultrasonic amplitude was 20 μm, the microstructure of deposition sample after semi-solid heat-treat exhibited typical equiaxed grain characteristics, corresponding to average grain diameter of 95.6 μm and shape coefficient of 1.263. Thin-walled samples with different shapes were formed to verify the capability of process platform. The inference of the formation mechanism of semi-solid microstructure was revealed at last: the introduction of ultrasonic rolling supplemented the plastic deformation energy, and semi-solid heat-treat provided temperature and time for the incubation of equiaxed grains, both of which were crucial for the formation of the semi-solid microstructure.</p></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"333 \",\"pages\":\"Article 118572\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013624002905\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624002905","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A novel ultrasonic rolling assisted direct energy deposition method with semi-solid thixo-forming characteristics for AA6061
In order to overcome the defects during the process of additive manufacturing for AA6061, a novel ultrasonic rolling assisted direct energy deposition method with semi-solid thixo-forming characteristics was proposed in this study, which used cold deformed AA6061 wire as raw material, and a corresponding process platform was established. The results showed that under the conditions of laser heating temperature of 750 ℃ and heating plate temperature of 200 ℃, the sample could achieve continuous multi-pass deposition while retaining some of the cold-drawn plastic deformation energy. When the vertical deformation rate was 0.153 and the ultrasonic amplitude was 20 μm, the microstructure of deposition sample after semi-solid heat-treat exhibited typical equiaxed grain characteristics, corresponding to average grain diameter of 95.6 μm and shape coefficient of 1.263. Thin-walled samples with different shapes were formed to verify the capability of process platform. The inference of the formation mechanism of semi-solid microstructure was revealed at last: the introduction of ultrasonic rolling supplemented the plastic deformation energy, and semi-solid heat-treat provided temperature and time for the incubation of equiaxed grains, both of which were crucial for the formation of the semi-solid microstructure.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.