{"title":"用于复合材料压力容器结构健康监测的传感器集成:综述","authors":"","doi":"10.1016/j.compstruct.2024.118546","DOIUrl":null,"url":null,"abstract":"<div><p>Filament-wound Composite Pressure Vessels (CPVs) are employed largely for gas or fluid storage under pressure in aerospace, automotive and naval industries. Composite vessels are subjected to harsh conditions such as critical loadings, extreme temperatures, and bursting; therefore, a permanent in-situ and online monitoring approach for the structural integrity of the vessels is essential. Hence, this review paper focuses on the description of the most trending used sensors such as piezoelectric (PZT and PVDF), piezoresistive (BP and MXene) and fiber optic (SOFO®, OBR and FBG) sensors, for developing a Structural Health Monitoring (SHM) approach to create self-sensing composite pressure vessels. The novelty of this review paper lies in providing an overview of existing works covering the integration of sensors in composite vessels, including sensor types, localization, and their impact on composite integrity. Particularly, an analysis of the literature is provided concerning the sensor’s integration and especially their monitored parameters, layout design and arrangement in CPVs. Additionally, the interaction between the host composite material and sensors is analyzed to understand how to integrate sensors with the minimum possible defects that alter the mechanical performance of composite vessels. Lastly, a discussion of a CPV’s SHM system is provided to offer researchers a foundation for upcoming experimental work.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0263822324006743/pdfft?md5=a87ae8ebf40e2329cac3a20038e00ad4&pid=1-s2.0-S0263822324006743-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sensors integration for structural health monitoring in composite pressure vessels: A review\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruct.2024.118546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Filament-wound Composite Pressure Vessels (CPVs) are employed largely for gas or fluid storage under pressure in aerospace, automotive and naval industries. Composite vessels are subjected to harsh conditions such as critical loadings, extreme temperatures, and bursting; therefore, a permanent in-situ and online monitoring approach for the structural integrity of the vessels is essential. Hence, this review paper focuses on the description of the most trending used sensors such as piezoelectric (PZT and PVDF), piezoresistive (BP and MXene) and fiber optic (SOFO®, OBR and FBG) sensors, for developing a Structural Health Monitoring (SHM) approach to create self-sensing composite pressure vessels. The novelty of this review paper lies in providing an overview of existing works covering the integration of sensors in composite vessels, including sensor types, localization, and their impact on composite integrity. Particularly, an analysis of the literature is provided concerning the sensor’s integration and especially their monitored parameters, layout design and arrangement in CPVs. Additionally, the interaction between the host composite material and sensors is analyzed to understand how to integrate sensors with the minimum possible defects that alter the mechanical performance of composite vessels. Lastly, a discussion of a CPV’s SHM system is provided to offer researchers a foundation for upcoming experimental work.</p></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0263822324006743/pdfft?md5=a87ae8ebf40e2329cac3a20038e00ad4&pid=1-s2.0-S0263822324006743-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324006743\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324006743","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Sensors integration for structural health monitoring in composite pressure vessels: A review
Filament-wound Composite Pressure Vessels (CPVs) are employed largely for gas or fluid storage under pressure in aerospace, automotive and naval industries. Composite vessels are subjected to harsh conditions such as critical loadings, extreme temperatures, and bursting; therefore, a permanent in-situ and online monitoring approach for the structural integrity of the vessels is essential. Hence, this review paper focuses on the description of the most trending used sensors such as piezoelectric (PZT and PVDF), piezoresistive (BP and MXene) and fiber optic (SOFO®, OBR and FBG) sensors, for developing a Structural Health Monitoring (SHM) approach to create self-sensing composite pressure vessels. The novelty of this review paper lies in providing an overview of existing works covering the integration of sensors in composite vessels, including sensor types, localization, and their impact on composite integrity. Particularly, an analysis of the literature is provided concerning the sensor’s integration and especially their monitored parameters, layout design and arrangement in CPVs. Additionally, the interaction between the host composite material and sensors is analyzed to understand how to integrate sensors with the minimum possible defects that alter the mechanical performance of composite vessels. Lastly, a discussion of a CPV’s SHM system is provided to offer researchers a foundation for upcoming experimental work.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.