用于复合材料压力容器结构健康监测的传感器集成:综述

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composite Structures Pub Date : 2024-09-03 DOI:10.1016/j.compstruct.2024.118546
{"title":"用于复合材料压力容器结构健康监测的传感器集成:综述","authors":"","doi":"10.1016/j.compstruct.2024.118546","DOIUrl":null,"url":null,"abstract":"<div><p>Filament-wound Composite Pressure Vessels (CPVs) are employed largely for gas or fluid storage under pressure in aerospace, automotive and naval industries. Composite vessels are subjected to harsh conditions such as critical loadings, extreme temperatures, and bursting; therefore, a permanent in-situ and online monitoring approach for the structural integrity of the vessels is essential. Hence, this review paper focuses on the description of the most trending used sensors such as piezoelectric (PZT and PVDF), piezoresistive (BP and MXene) and fiber optic (SOFO®, OBR and FBG) sensors, for developing a Structural Health Monitoring (SHM) approach to create self-sensing composite pressure vessels. The novelty of this review paper lies in providing an overview of existing works covering the integration of sensors in composite vessels, including sensor types, localization, and their impact on composite integrity. Particularly, an analysis of the literature is provided concerning the sensor’s integration and especially their monitored parameters, layout design and arrangement in CPVs. Additionally, the interaction between the host composite material and sensors is analyzed to understand how to integrate sensors with the minimum possible defects that alter the mechanical performance of composite vessels. Lastly, a discussion of a CPV’s SHM system is provided to offer researchers a foundation for upcoming experimental work.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0263822324006743/pdfft?md5=a87ae8ebf40e2329cac3a20038e00ad4&pid=1-s2.0-S0263822324006743-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sensors integration for structural health monitoring in composite pressure vessels: A review\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruct.2024.118546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Filament-wound Composite Pressure Vessels (CPVs) are employed largely for gas or fluid storage under pressure in aerospace, automotive and naval industries. Composite vessels are subjected to harsh conditions such as critical loadings, extreme temperatures, and bursting; therefore, a permanent in-situ and online monitoring approach for the structural integrity of the vessels is essential. Hence, this review paper focuses on the description of the most trending used sensors such as piezoelectric (PZT and PVDF), piezoresistive (BP and MXene) and fiber optic (SOFO®, OBR and FBG) sensors, for developing a Structural Health Monitoring (SHM) approach to create self-sensing composite pressure vessels. The novelty of this review paper lies in providing an overview of existing works covering the integration of sensors in composite vessels, including sensor types, localization, and their impact on composite integrity. Particularly, an analysis of the literature is provided concerning the sensor’s integration and especially their monitored parameters, layout design and arrangement in CPVs. Additionally, the interaction between the host composite material and sensors is analyzed to understand how to integrate sensors with the minimum possible defects that alter the mechanical performance of composite vessels. Lastly, a discussion of a CPV’s SHM system is provided to offer researchers a foundation for upcoming experimental work.</p></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0263822324006743/pdfft?md5=a87ae8ebf40e2329cac3a20038e00ad4&pid=1-s2.0-S0263822324006743-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324006743\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324006743","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

缠绕丝状复合材料压力容器(CPV)主要用于航空航天、汽车和海军工业中的气体或流体压力存储。复合材料容器要承受临界载荷、极端温度和爆裂等恶劣条件,因此,对容器结构完整性的永久性现场和在线监测方法至关重要。因此,本综述论文重点介绍了压电(PZT 和 PVDF)、压阻(BP 和 MXene)和光纤(SOFO®、OBR 和 FBG)传感器等最常用的传感器,用于开发结构健康监测(SHM)方法,以创建自感应复合材料压力容器。本综述论文的新颖之处在于概述了将传感器集成到复合材料容器中的现有工作,包括传感器类型、定位及其对复合材料完整性的影响。特别是,本文对有关传感器集成的文献进行了分析,尤其是它们在 CPV 中的监控参数、布局设计和安排。此外,还分析了主机复合材料与传感器之间的相互作用,以了解如何在集成传感器时尽可能减少改变复合材料容器机械性能的缺陷。最后,还讨论了 CPV 的 SHM 系统,为研究人员即将开展的实验工作奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensors integration for structural health monitoring in composite pressure vessels: A review

Filament-wound Composite Pressure Vessels (CPVs) are employed largely for gas or fluid storage under pressure in aerospace, automotive and naval industries. Composite vessels are subjected to harsh conditions such as critical loadings, extreme temperatures, and bursting; therefore, a permanent in-situ and online monitoring approach for the structural integrity of the vessels is essential. Hence, this review paper focuses on the description of the most trending used sensors such as piezoelectric (PZT and PVDF), piezoresistive (BP and MXene) and fiber optic (SOFO®, OBR and FBG) sensors, for developing a Structural Health Monitoring (SHM) approach to create self-sensing composite pressure vessels. The novelty of this review paper lies in providing an overview of existing works covering the integration of sensors in composite vessels, including sensor types, localization, and their impact on composite integrity. Particularly, an analysis of the literature is provided concerning the sensor’s integration and especially their monitored parameters, layout design and arrangement in CPVs. Additionally, the interaction between the host composite material and sensors is analyzed to understand how to integrate sensors with the minimum possible defects that alter the mechanical performance of composite vessels. Lastly, a discussion of a CPV’s SHM system is provided to offer researchers a foundation for upcoming experimental work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
期刊最新文献
Hybrid composite-metal structure response to post-impact compression – Experimental and numerical study Extension of the crack equivalent method applied to mode II fracture of thermoplastic composites bonded joints using the ENF test Comparative analysis of modal, static, and buckling behaviors in thin-walled composite cylinders: A detailed study Crashworthiness assessment of a composite fuselage stanchion employing a strain rate dependent damage model A mean field homogenization model for the mechanical response of ceramic matrix composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1