{"title":"基于氮化物的高灵敏度 SPR 生物传感器,用于高效检测肾上腺/血液/乳腺/宫颈/皮肤癌","authors":"Sandipta Senapati , Madhusudan Mishra , Narayan Sahoo , Sukanta K. Tripathy","doi":"10.1016/j.sbsr.2024.100684","DOIUrl":null,"url":null,"abstract":"<div><p>The current study outlines four extremely sensitive SPR-based cancer sensors that have the highest sensitivity to date for the quick and accurate diagnosis of six major cancer cells, including adrenal gland, breast (t1/t2), cervical, blood, and skin cancer, where the first two are blamed as the most fatal and infected ones, respectively. Four nitrides—AlN, GaN, InN and Si<sub>3</sub>N<sub>4</sub>—are employed in four distinct sensor configurations to identify the aforementioned six cancer cell types. The sensor with AlN is found the most suitable for skin/breast (type-1) cancer detection with sensitivity (<em>S</em>) and quality factor (QF) of 370/385 Deg/RIU and 92/113 RIU<sup>−1</sup>, the GaN based structure for adrenal gland/blood cancer detection with <em>S</em> and QF of 400/400 Deg/RIU and 108/102 RIU<sup>−1</sup>, the InN-based structure for breast cancer (type-2) detection with <em>S</em> and QF of 414 Deg/RIU and 108 RIU<sup>−1</sup>, and finally the Si<sub>3</sub>N<sub>4</sub>-based structure for cervical cancer detection with <em>S</em> and QF of 341 Deg/RIU and 92 RIU<sup>−1</sup>, respectively. Furthermore, AlN and GaN based sensors can sense all the six types of cancer cells with a minimum sensitivity of around 230 Deg/RIU, an accepted number as per some recently reported results. Finite element method-based simulator COMSOL is used to study and optimize the structures considering an operating wavelength of 633 nm, anticipating for a low-cost sensor prototype. The highest reported sensitivity in this study is 414 Deg/RIU with QF of 108 RIU<sup>−1</sup> for the Au-Ag-InN configuration for the breast cancer (type-2) detection.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"45 ","pages":"Article 100684"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000667/pdfft?md5=7a1fdb45dbe9806e12b1b071ae55f598&pid=1-s2.0-S2214180424000667-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive nitride-based SPR biosensor for efficient adrenal gland/blood/breast/cervical/skin cancer detection\",\"authors\":\"Sandipta Senapati , Madhusudan Mishra , Narayan Sahoo , Sukanta K. Tripathy\",\"doi\":\"10.1016/j.sbsr.2024.100684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current study outlines four extremely sensitive SPR-based cancer sensors that have the highest sensitivity to date for the quick and accurate diagnosis of six major cancer cells, including adrenal gland, breast (t1/t2), cervical, blood, and skin cancer, where the first two are blamed as the most fatal and infected ones, respectively. Four nitrides—AlN, GaN, InN and Si<sub>3</sub>N<sub>4</sub>—are employed in four distinct sensor configurations to identify the aforementioned six cancer cell types. The sensor with AlN is found the most suitable for skin/breast (type-1) cancer detection with sensitivity (<em>S</em>) and quality factor (QF) of 370/385 Deg/RIU and 92/113 RIU<sup>−1</sup>, the GaN based structure for adrenal gland/blood cancer detection with <em>S</em> and QF of 400/400 Deg/RIU and 108/102 RIU<sup>−1</sup>, the InN-based structure for breast cancer (type-2) detection with <em>S</em> and QF of 414 Deg/RIU and 108 RIU<sup>−1</sup>, and finally the Si<sub>3</sub>N<sub>4</sub>-based structure for cervical cancer detection with <em>S</em> and QF of 341 Deg/RIU and 92 RIU<sup>−1</sup>, respectively. Furthermore, AlN and GaN based sensors can sense all the six types of cancer cells with a minimum sensitivity of around 230 Deg/RIU, an accepted number as per some recently reported results. Finite element method-based simulator COMSOL is used to study and optimize the structures considering an operating wavelength of 633 nm, anticipating for a low-cost sensor prototype. The highest reported sensitivity in this study is 414 Deg/RIU with QF of 108 RIU<sup>−1</sup> for the Au-Ag-InN configuration for the breast cancer (type-2) detection.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"45 \",\"pages\":\"Article 100684\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000667/pdfft?md5=7a1fdb45dbe9806e12b1b071ae55f598&pid=1-s2.0-S2214180424000667-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Highly sensitive nitride-based SPR biosensor for efficient adrenal gland/blood/breast/cervical/skin cancer detection
The current study outlines four extremely sensitive SPR-based cancer sensors that have the highest sensitivity to date for the quick and accurate diagnosis of six major cancer cells, including adrenal gland, breast (t1/t2), cervical, blood, and skin cancer, where the first two are blamed as the most fatal and infected ones, respectively. Four nitrides—AlN, GaN, InN and Si3N4—are employed in four distinct sensor configurations to identify the aforementioned six cancer cell types. The sensor with AlN is found the most suitable for skin/breast (type-1) cancer detection with sensitivity (S) and quality factor (QF) of 370/385 Deg/RIU and 92/113 RIU−1, the GaN based structure for adrenal gland/blood cancer detection with S and QF of 400/400 Deg/RIU and 108/102 RIU−1, the InN-based structure for breast cancer (type-2) detection with S and QF of 414 Deg/RIU and 108 RIU−1, and finally the Si3N4-based structure for cervical cancer detection with S and QF of 341 Deg/RIU and 92 RIU−1, respectively. Furthermore, AlN and GaN based sensors can sense all the six types of cancer cells with a minimum sensitivity of around 230 Deg/RIU, an accepted number as per some recently reported results. Finite element method-based simulator COMSOL is used to study and optimize the structures considering an operating wavelength of 633 nm, anticipating for a low-cost sensor prototype. The highest reported sensitivity in this study is 414 Deg/RIU with QF of 108 RIU−1 for the Au-Ag-InN configuration for the breast cancer (type-2) detection.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.