用于预测交互式能源社区净能源需求的联合学习框架

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS Sustainable Energy Grids & Networks Pub Date : 2024-09-06 DOI:10.1016/j.segan.2024.101522
Nuno Mendes , Jérôme Mendes , Javad Mohammadi , Pedro Moura
{"title":"用于预测交互式能源社区净能源需求的联合学习框架","authors":"Nuno Mendes ,&nbsp;Jérôme Mendes ,&nbsp;Javad Mohammadi ,&nbsp;Pedro Moura","doi":"10.1016/j.segan.2024.101522","DOIUrl":null,"url":null,"abstract":"<div><p>The implementation of transactive energy systems in communities requires new control mechanisms for enabling end-use energy trading. To optimize the operation of these communities, the availability of accurate predictions for the net energy demand is fundamental. However, to ensure effective management of flexible resources, the local generation and demand must be foretasted separately instead of just forecasting the net-energy demand. Additionally, to improve the forecast systems, more detailed data from the buildings are needed, but most information (such as patterns of occupancy) can be private. This paper proposes a novel federated learning (FL) framework for predicting building temporal net energy demand in transaction energy communities. The proposed approach is based on an FL architecture and has two independent forecast systems (generation and demand systems), ensuring collaborative learning among the buildings without sharing private data. The developed framework allows the integration of third-party data providers and facilitates coordination by a central server. The main goal of the framework is to support the management systems of transactive energy communities by computing the forecast of demand, generation, and net-energy demand. Additionally, such a framework has the novelty of introducing as an auxiliary system of Federated Transfer Learning, which will guarantee a more capable forecast system for new communities. The developed structure was tested using two communities, one with 100 buildings and the second with 25. The results showcase high accuracy and adaptability to different variables and scenarios, for instance, seasonal variations.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"40 ","pages":"Article 101522"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352467724002510/pdfft?md5=8ade0aa7610755f7b232140962632aca&pid=1-s2.0-S2352467724002510-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Federated learning framework for prediction of net energy demand in transactive energy communities\",\"authors\":\"Nuno Mendes ,&nbsp;Jérôme Mendes ,&nbsp;Javad Mohammadi ,&nbsp;Pedro Moura\",\"doi\":\"10.1016/j.segan.2024.101522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The implementation of transactive energy systems in communities requires new control mechanisms for enabling end-use energy trading. To optimize the operation of these communities, the availability of accurate predictions for the net energy demand is fundamental. However, to ensure effective management of flexible resources, the local generation and demand must be foretasted separately instead of just forecasting the net-energy demand. Additionally, to improve the forecast systems, more detailed data from the buildings are needed, but most information (such as patterns of occupancy) can be private. This paper proposes a novel federated learning (FL) framework for predicting building temporal net energy demand in transaction energy communities. The proposed approach is based on an FL architecture and has two independent forecast systems (generation and demand systems), ensuring collaborative learning among the buildings without sharing private data. The developed framework allows the integration of third-party data providers and facilitates coordination by a central server. The main goal of the framework is to support the management systems of transactive energy communities by computing the forecast of demand, generation, and net-energy demand. Additionally, such a framework has the novelty of introducing as an auxiliary system of Federated Transfer Learning, which will guarantee a more capable forecast system for new communities. The developed structure was tested using two communities, one with 100 buildings and the second with 25. The results showcase high accuracy and adaptability to different variables and scenarios, for instance, seasonal variations.</p></div>\",\"PeriodicalId\":56142,\"journal\":{\"name\":\"Sustainable Energy Grids & Networks\",\"volume\":\"40 \",\"pages\":\"Article 101522\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352467724002510/pdfft?md5=8ade0aa7610755f7b232140962632aca&pid=1-s2.0-S2352467724002510-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Grids & Networks\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352467724002510\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002510","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在社区实施交互式能源系统需要新的控制机制,以实现终端能源交易。要优化这些社区的运行,就必须对净能源需求进行准确预测。然而,为了确保灵活资源的有效管理,必须分别预测当地的发电量和需求量,而不仅仅是预测净能源需求。此外,要改进预测系统,还需要建筑物提供更详细的数据,但大多数信息(如占用模式)都是私人信息。本文提出了一种新颖的联合学习(FL)框架,用于预测交易能源社区中建筑物的时间净能源需求。所提出的方法基于 FL 架构,有两个独立的预测系统(发电系统和需求系统),可确保建筑物之间的协作学习,而无需共享私人数据。所开发的框架允许整合第三方数据提供商,并促进中央服务器的协调。该框架的主要目标是通过计算需求、发电和净能源需求的预测,支持交易型能源社区的管理系统。此外,该框架还引入了联邦转移学习辅助系统,确保为新社区提供功能更强的预测系统。我们使用两个社区对所开发的结构进行了测试,一个社区有 100 栋建筑,另一个社区有 25 栋建筑。测试结果表明,该系统具有很高的准确性,并能适应不同的变量和情况,例如季节性变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Federated learning framework for prediction of net energy demand in transactive energy communities

The implementation of transactive energy systems in communities requires new control mechanisms for enabling end-use energy trading. To optimize the operation of these communities, the availability of accurate predictions for the net energy demand is fundamental. However, to ensure effective management of flexible resources, the local generation and demand must be foretasted separately instead of just forecasting the net-energy demand. Additionally, to improve the forecast systems, more detailed data from the buildings are needed, but most information (such as patterns of occupancy) can be private. This paper proposes a novel federated learning (FL) framework for predicting building temporal net energy demand in transaction energy communities. The proposed approach is based on an FL architecture and has two independent forecast systems (generation and demand systems), ensuring collaborative learning among the buildings without sharing private data. The developed framework allows the integration of third-party data providers and facilitates coordination by a central server. The main goal of the framework is to support the management systems of transactive energy communities by computing the forecast of demand, generation, and net-energy demand. Additionally, such a framework has the novelty of introducing as an auxiliary system of Federated Transfer Learning, which will guarantee a more capable forecast system for new communities. The developed structure was tested using two communities, one with 100 buildings and the second with 25. The results showcase high accuracy and adaptability to different variables and scenarios, for instance, seasonal variations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
期刊最新文献
A hybrid machine learning-based cyber-threat mitigation in energy and flexibility scheduling of interconnected local energy networks considering a negawatt demand response portfolio An equilibrium-based distribution market model hosting energy communities and grid-scale battery energy storage The clearing strategy of primary frequency control ancillary services market from the point of view ISO in the presence of synchronous generations and virtual power plants based on responsive loads Optimal scheduling of smart home appliances with a stochastic power outage: A two-stage stochastic programming approach Cooperative price-based demand response program for multiple aggregators based on multi-agent reinforcement learning and Shapley-value
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1