利用大型语言模型进行消费者细分

IF 11 1区 管理学 Q1 BUSINESS Journal of Retailing and Consumer Services Pub Date : 2024-09-09 DOI:10.1016/j.jretconser.2024.104078
Yinan Li , Ying Liu , Muran Yu
{"title":"利用大型语言模型进行消费者细分","authors":"Yinan Li ,&nbsp;Ying Liu ,&nbsp;Muran Yu","doi":"10.1016/j.jretconser.2024.104078","DOIUrl":null,"url":null,"abstract":"<div><p>Consumer segmentation is vital for companies to customize their offerings effectively. Our study explores the application of Large Language Models (LLMs) in marketing research for consumer segmentation. We developed a workflow leveraging LLMs to perform clustering analysis based on consumer survey data, with a focus on text-based multiple-choice and open-ended questions. Firstly, we employed a LLMs model to embed text for clustering, demonstrating that LLMs enhance clustering accuracy over traditional models. Secondly, we created persona chatbots using LLMs, which achieved over 89% accuracy in simulating consumer preferences. Our findings underscore the potential of our LLMs framework in marketing research.</p></div>","PeriodicalId":48399,"journal":{"name":"Journal of Retailing and Consumer Services","volume":"82 ","pages":"Article 104078"},"PeriodicalIF":11.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consumer segmentation with large language models\",\"authors\":\"Yinan Li ,&nbsp;Ying Liu ,&nbsp;Muran Yu\",\"doi\":\"10.1016/j.jretconser.2024.104078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consumer segmentation is vital for companies to customize their offerings effectively. Our study explores the application of Large Language Models (LLMs) in marketing research for consumer segmentation. We developed a workflow leveraging LLMs to perform clustering analysis based on consumer survey data, with a focus on text-based multiple-choice and open-ended questions. Firstly, we employed a LLMs model to embed text for clustering, demonstrating that LLMs enhance clustering accuracy over traditional models. Secondly, we created persona chatbots using LLMs, which achieved over 89% accuracy in simulating consumer preferences. Our findings underscore the potential of our LLMs framework in marketing research.</p></div>\",\"PeriodicalId\":48399,\"journal\":{\"name\":\"Journal of Retailing and Consumer Services\",\"volume\":\"82 \",\"pages\":\"Article 104078\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Retailing and Consumer Services\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969698924003746\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Retailing and Consumer Services","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969698924003746","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

消费者细分对于企业有效定制产品至关重要。我们的研究探讨了大语言模型(LLMs)在消费者细分营销研究中的应用。我们开发了一个工作流程,利用 LLMs 对消费者调查数据进行聚类分析,重点是基于文本的选择题和开放式问题。首先,我们使用 LLMs 模型嵌入文本进行聚类,证明 LLMs 比传统模型提高了聚类的准确性。其次,我们使用 LLMs 创建了角色聊天机器人,其模拟消费者偏好的准确率超过 89%。我们的研究结果凸显了 LLMs 框架在营销研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consumer segmentation with large language models

Consumer segmentation is vital for companies to customize their offerings effectively. Our study explores the application of Large Language Models (LLMs) in marketing research for consumer segmentation. We developed a workflow leveraging LLMs to perform clustering analysis based on consumer survey data, with a focus on text-based multiple-choice and open-ended questions. Firstly, we employed a LLMs model to embed text for clustering, demonstrating that LLMs enhance clustering accuracy over traditional models. Secondly, we created persona chatbots using LLMs, which achieved over 89% accuracy in simulating consumer preferences. Our findings underscore the potential of our LLMs framework in marketing research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
20.40
自引率
14.40%
发文量
340
审稿时长
20 days
期刊介绍: The Journal of Retailing and Consumer Services is a prominent publication that serves as a platform for international and interdisciplinary research and discussions in the constantly evolving fields of retailing and services studies. With a specific emphasis on consumer behavior and policy and managerial decisions, the journal aims to foster contributions from academics encompassing diverse disciplines. The primary areas covered by the journal are: Retailing and the sale of goods The provision of consumer services, including transportation, tourism, and leisure.
期刊最新文献
Customers’ reuse intention to autonomous delivery vehicles in terminal delivery service: A valence theory perspective We match! Building online brand engagement behaviours through emotional and rational processes From popularity to pitfalls: Diagnosing consumer issues and engineering solutions for an ink-inspired mobile theme system Retail consumers' conundrum: An in-depth qualitative study navigating the motivations and aversion of chatbots Bright and dark sides of green consumerism: An in-depth qualitative investigation in retailing context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1