通过在碳纤维上涂覆二氧化硅提高聚二甲基硅氧烷聚合物纳米复合材料的电绝缘性和导热性

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-09-01 DOI:10.1016/j.polymer.2024.127572
{"title":"通过在碳纤维上涂覆二氧化硅提高聚二甲基硅氧烷聚合物纳米复合材料的电绝缘性和导热性","authors":"","doi":"10.1016/j.polymer.2024.127572","DOIUrl":null,"url":null,"abstract":"<div><p>Mesophase pitch-based carbon fibers (MPCFs) exhibit high thermal conductivity (∼900Wm<sup>−1</sup>K<sup>−1</sup>) and are considered to be an important candidate for future thermal management. However, MPCFs lead to an increase in the electrical conductivity of nanocomposites due to the low volume electrical resistivity (∼10<sup>−3</sup> Ω cm). The development of MPCFs nanocomposites with high thermal conductivity and good electrical insulation remains a challenging problem. In order to solve the problem, we utilized the surfactant cetyltrimethylammonium bromide (CTAB) as an anchor for hydrolysis, and employed a sol-gel method to deposit a silica coating on MPCFs (silica@MPCFs). Silica@MPCFs was used as the filler for polydimethylsiloxane (PDMS) matrix. The nanocomposites exhibit commendable thermal conductivity (achieving 1.52 Wm<sup>−1</sup>K<sup>−1</sup>) and excellent volume electrical insulation (exceeding 10<sup>13</sup> Ω cm) at a 30 vol% concentration. Notably, both the thermal conductivity and volume electrical insulation exceed MPCFs/PDMS. This approach to electrical insulation treatment holds substantial potential for the future preparation of high-performance nanocomposites of electronic devices.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing electrical insulation and thermal conductivity in polydimethylsiloxane polymer nanocomposites through silica coating on carbon fibers\",\"authors\":\"\",\"doi\":\"10.1016/j.polymer.2024.127572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mesophase pitch-based carbon fibers (MPCFs) exhibit high thermal conductivity (∼900Wm<sup>−1</sup>K<sup>−1</sup>) and are considered to be an important candidate for future thermal management. However, MPCFs lead to an increase in the electrical conductivity of nanocomposites due to the low volume electrical resistivity (∼10<sup>−3</sup> Ω cm). The development of MPCFs nanocomposites with high thermal conductivity and good electrical insulation remains a challenging problem. In order to solve the problem, we utilized the surfactant cetyltrimethylammonium bromide (CTAB) as an anchor for hydrolysis, and employed a sol-gel method to deposit a silica coating on MPCFs (silica@MPCFs). Silica@MPCFs was used as the filler for polydimethylsiloxane (PDMS) matrix. The nanocomposites exhibit commendable thermal conductivity (achieving 1.52 Wm<sup>−1</sup>K<sup>−1</sup>) and excellent volume electrical insulation (exceeding 10<sup>13</sup> Ω cm) at a 30 vol% concentration. Notably, both the thermal conductivity and volume electrical insulation exceed MPCFs/PDMS. This approach to electrical insulation treatment holds substantial potential for the future preparation of high-performance nanocomposites of electronic devices.</p></div>\",\"PeriodicalId\":405,\"journal\":{\"name\":\"Polymer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003238612400908X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003238612400908X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

中间相沥青基碳纤维(MPCFs)具有很高的热导率(∼900Wm-1K-1),被认为是未来热管理的重要候选材料。然而,由于体积电阻率较低(∼10-3 Ω cm),MPCFs 会导致纳米复合材料的导电率增加。开发具有高导热性和良好电绝缘性的 MPCFs 纳米复合材料仍然是一个具有挑战性的问题。为了解决这个问题,我们利用表面活性剂十六烷基三甲基溴化铵(CTAB)作为水解锚,并采用溶胶-凝胶法在 MPCFs 上沉积二氧化硅涂层(二氧化硅@MPCFs)。二氧化硅@MPCFs被用作聚二甲基硅氧烷(PDMS)基质的填料。这种纳米复合材料的热导率(达到 1.52 Wm-1K-1)和体积电绝缘性(超过 1013 Ω cm)都非常出色(浓度为 30%)。值得注意的是,热导率和体积电绝缘性都超过了 MPCFs/PDMS。这种电绝缘处理方法为未来制备高性能电子设备纳米复合材料提供了巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing electrical insulation and thermal conductivity in polydimethylsiloxane polymer nanocomposites through silica coating on carbon fibers

Mesophase pitch-based carbon fibers (MPCFs) exhibit high thermal conductivity (∼900Wm−1K−1) and are considered to be an important candidate for future thermal management. However, MPCFs lead to an increase in the electrical conductivity of nanocomposites due to the low volume electrical resistivity (∼10−3 Ω cm). The development of MPCFs nanocomposites with high thermal conductivity and good electrical insulation remains a challenging problem. In order to solve the problem, we utilized the surfactant cetyltrimethylammonium bromide (CTAB) as an anchor for hydrolysis, and employed a sol-gel method to deposit a silica coating on MPCFs (silica@MPCFs). Silica@MPCFs was used as the filler for polydimethylsiloxane (PDMS) matrix. The nanocomposites exhibit commendable thermal conductivity (achieving 1.52 Wm−1K−1) and excellent volume electrical insulation (exceeding 1013 Ω cm) at a 30 vol% concentration. Notably, both the thermal conductivity and volume electrical insulation exceed MPCFs/PDMS. This approach to electrical insulation treatment holds substantial potential for the future preparation of high-performance nanocomposites of electronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Synergistic integration of plant derived galactomannan and MXene to produce multifunctional nanocomposites with antibacterial and osteogenic properties Ultra-tough, strong and transparent bio-based waterborne polyurethanes with exceptional anti-corrosion properties In-situ fabricated hexagonal PDMS microsphere arrays for substrate-mode light extraction in blue fluorescent organic light emitting diodes Matching Combination of Amorphous Ionic Hydrogel with Elastic Fabric Enables Integrated Properties for Wearable Sensing Effects of crosslinked rubber particles on rheological behaviors of ethylene-propylene-diene rubber/ polypropylene thermoplastic vulcanizates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1