M. Couder-García , L.A. Prado-Barragán , S. Huerta-Ochoa , C.O. Castillo-Araiza
{"title":"评估运输现象对壁式冷却填料床生物反应器中固态发酵农用工业残渣再资源化的建模和优化的影响","authors":"M. Couder-García , L.A. Prado-Barragán , S. Huerta-Ochoa , C.O. Castillo-Araiza","doi":"10.1016/j.cherd.2024.08.031","DOIUrl":null,"url":null,"abstract":"<div><p>This work assesses the influence of transport phenomena on the growth of <em>Yarrowia lipolytica</em> 2.2ab (<em>Yl</em>2.2ab) and protease production during Solid-State Fermentation (SSF) in a bench-scale wall-cooled tubular bioreactor packed with substrate-based pellets derived from agro-industrial residues. Our engineering methodology, in a novel manner, includes: (i) developing a new pseudo-heterogeneous model, (ii) identifying and quantifying the impact of all transport phenomena on microbial kinetics, (iii) elucidating how fluid dynamics enhances heat and mass transfer processes, and hence microbial kinetics, and (iv) determining the operational and geometric parameters for optimal bioreactor performance. As main results: (i) all transport phenomena occurring within the bench-scale bioreactor are fundamental for its reliable simulation and will be essential for its scale-up, and (ii) the maximum production of proteases, 420 U kg<sub>DS</sub><sup>‐1−1</sup>, is achieved under the following operational conditions: a tube to particle diameter ratio of 5.6, a bath temperature of 45°C, an inlet airflow rate of 1 L min<sup>−1</sup>, and inlet fluid temperature of 43 °C. Finally, the pseudo-heterogeneous model is assessed by describing SSF-based observations from the literature, appropriately predicting the performance of <em>Yl</em>2.2ab in a bench-scale bioreactor. These results pave the way for future exploration of <em>Yl</em>2.2ab in SSF within larger-scale packed-bed bioreactors.</p></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"210 ","pages":"Pages 365-381"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0263876224005094/pdfft?md5=f9f0ac4a22421004ac1487efda4af795&pid=1-s2.0-S0263876224005094-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessing the Impact of Transport Phenomena on Modeling and Optimization of Solid-State Fermentation for the Revalorization of Agro-Industrial Residues in a Wall‐Cooled Packed‐Bed Bioreactor\",\"authors\":\"M. Couder-García , L.A. Prado-Barragán , S. Huerta-Ochoa , C.O. Castillo-Araiza\",\"doi\":\"10.1016/j.cherd.2024.08.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work assesses the influence of transport phenomena on the growth of <em>Yarrowia lipolytica</em> 2.2ab (<em>Yl</em>2.2ab) and protease production during Solid-State Fermentation (SSF) in a bench-scale wall-cooled tubular bioreactor packed with substrate-based pellets derived from agro-industrial residues. Our engineering methodology, in a novel manner, includes: (i) developing a new pseudo-heterogeneous model, (ii) identifying and quantifying the impact of all transport phenomena on microbial kinetics, (iii) elucidating how fluid dynamics enhances heat and mass transfer processes, and hence microbial kinetics, and (iv) determining the operational and geometric parameters for optimal bioreactor performance. As main results: (i) all transport phenomena occurring within the bench-scale bioreactor are fundamental for its reliable simulation and will be essential for its scale-up, and (ii) the maximum production of proteases, 420 U kg<sub>DS</sub><sup>‐1−1</sup>, is achieved under the following operational conditions: a tube to particle diameter ratio of 5.6, a bath temperature of 45°C, an inlet airflow rate of 1 L min<sup>−1</sup>, and inlet fluid temperature of 43 °C. Finally, the pseudo-heterogeneous model is assessed by describing SSF-based observations from the literature, appropriately predicting the performance of <em>Yl</em>2.2ab in a bench-scale bioreactor. These results pave the way for future exploration of <em>Yl</em>2.2ab in SSF within larger-scale packed-bed bioreactors.</p></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"210 \",\"pages\":\"Pages 365-381\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0263876224005094/pdfft?md5=f9f0ac4a22421004ac1487efda4af795&pid=1-s2.0-S0263876224005094-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224005094\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005094","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Assessing the Impact of Transport Phenomena on Modeling and Optimization of Solid-State Fermentation for the Revalorization of Agro-Industrial Residues in a Wall‐Cooled Packed‐Bed Bioreactor
This work assesses the influence of transport phenomena on the growth of Yarrowia lipolytica 2.2ab (Yl2.2ab) and protease production during Solid-State Fermentation (SSF) in a bench-scale wall-cooled tubular bioreactor packed with substrate-based pellets derived from agro-industrial residues. Our engineering methodology, in a novel manner, includes: (i) developing a new pseudo-heterogeneous model, (ii) identifying and quantifying the impact of all transport phenomena on microbial kinetics, (iii) elucidating how fluid dynamics enhances heat and mass transfer processes, and hence microbial kinetics, and (iv) determining the operational and geometric parameters for optimal bioreactor performance. As main results: (i) all transport phenomena occurring within the bench-scale bioreactor are fundamental for its reliable simulation and will be essential for its scale-up, and (ii) the maximum production of proteases, 420 U kgDS‐1−1, is achieved under the following operational conditions: a tube to particle diameter ratio of 5.6, a bath temperature of 45°C, an inlet airflow rate of 1 L min−1, and inlet fluid temperature of 43 °C. Finally, the pseudo-heterogeneous model is assessed by describing SSF-based observations from the literature, appropriately predicting the performance of Yl2.2ab in a bench-scale bioreactor. These results pave the way for future exploration of Yl2.2ab in SSF within larger-scale packed-bed bioreactors.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.